22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool

      review-article
      1 , 1 , 2 , *
      Antibiotics
      MDPI
      CRISPR, Cas9, genetic engineering, gene editing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteriophages are pervasive viruses that infect bacteria, relying on their genetic machinery to replicate. In order to protect themselves from this kind of invader, bacteria developed an ingenious adaptive defence system, clustered regularly interspaced short palindromic repeats (CRISPR). Researchers soon realised that a specific type of CRISPR system, CRISPR-Cas9, could be modified into a simple and efficient genetic engineering technology, with several improvements over currently used systems. This discovery set in motion a revolution in genetics, with new and improved CRISPR systems being used in plenty of in vitro and in vivo experiments in recent years. This review illustrates the mechanisms behind CRISPR-Cas systems as a means of bacterial immunity against phage invasion and how these systems were engineered to originate new genetic manipulation tools. Newfound CRISPR-Cas technologies and the up-and-coming applications of these systems on healthcare and other fields of science are also discussed.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          A TALE nuclease architecture for efficient genome editing.

          Nucleases that cleave unique genomic sequences in living cells can be used for targeted gene editing and mutagenesis. Here we develop a strategy for generating such reagents based on transcription activator-like effector (TALE) proteins from Xanthomonas. We identify TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and use these nucleases to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%. We further show that designed TALEs can regulate endogenous mammalian genes. These studies demonstrate the effective application of designed TALE transcription factors and nucleases for the targeted regulation and modification of endogenous genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting DNA double-strand breaks with TAL effector nucleases.

            Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-strand breaks to specific, targeted sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression profiling reveals off-target gene regulation by RNAi.

              RNA interference is thought to require near-identity between the small interfering RNA (siRNA) and its cognate mRNA. Here, we used gene expression profiling to characterize the specificity of gene silencing by siRNAs in cultured human cells. Transcript profiles revealed siRNA-specific rather than target-specific signatures, including direct silencing of nontargeted genes containing as few as eleven contiguous nucleotides of identity to the siRNA. These results demonstrate that siRNAs may cross-react with targets of limited sequence similarity.
                Bookmark

                Author and article information

                Journal
                Antibiotics (Basel)
                Antibiotics (Basel)
                antibiotics
                Antibiotics
                MDPI
                2079-6382
                28 February 2019
                March 2019
                : 8
                : 1
                : 18
                Affiliations
                [1 ]Laboratory of Microbiology, Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; calhaz.al@ 123456gmail.com
                [2 ]Center for Neurosciences Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
                Author notes
                [* ]Correspondence: gjsilva@ 123456ci.uc.pt or silva.gj@ 123456gmail.com ; Tel.: +351-239-488-460
                Author information
                https://orcid.org/0000-0001-6519-0261
                Article
                antibiotics-08-00018
                10.3390/antibiotics8010018
                6466564
                30823430
                0a109858-9623-4e87-86be-ef31880bcbe0
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 January 2019
                : 27 February 2019
                Categories
                Review

                crispr,cas9,genetic engineering,gene editing
                crispr, cas9, genetic engineering, gene editing

                Comments

                Comment on this article