18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intraspecific facilitation by allelochemical mediated grazing protection within a toxigenic dinoflagellate population.

      Proceedings. Biological sciences
      The Royal Society
      allele-specific quantitative PCR, phenotypic diversity, Alexandrium fundyense, associational resistance, grazing protection, harmful algal blooms

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dinoflagellates are a major cause of harmful algal blooms (HABs), with consequences for coastal marine ecosystem functioning and services. Alexandrium fundyense (previously Alexandrium tamarense) is one of the most abundant and widespread toxigenic species in the temperate Northern and Southern Hemisphere and produces paralytic shellfish poisoning toxins as well as lytic allelochemical substances. These bioactive compounds may support the success of A. fundyense and its ability to form blooms. Here we investigate the impact of grazing on monoclonal and mixed set-ups of highly (Alex2) and moderately (Alex4) allelochemically active A. fundyense strains and a non-allelochemically active conspecific (Alex5) by the heterotrophic dinoflagellate Polykrikos kofoidii. While Alex4 and particularly Alex5 were strongly grazed by P. kofoidii when offered alone, both strains grew well in the mixed assemblages (Alex4 + Alex5 and Alex2 + Alex5). Hence, the allelochemical active strains facilitated growth of the non-active strain by protecting the population as a whole against grazing. Based on our results, we argue that facilitation among clonal lineages within a species may partly explain the high genotypic and phenotypic diversity of Alexandrium populations. Populations of Alexandrium may comprise multiple cooperative traits that act in concert with intraspecific facilitation, and hence promote the success of this notorious HAB species.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Ecological consequences of genetic diversity.

          Understanding the ecological consequences of biodiversity is a fundamental challenge. Research on a key component of biodiversity, genetic diversity, has traditionally focused on its importance in evolutionary processes, but classical studies in evolutionary biology, agronomy and conservation biology indicate that genetic diversity might also have important ecological effects. Our review of the literature reveals significant effects of genetic diversity on ecological processes such as primary productivity, population recovery from disturbance, interspecific competition, community structure, and fluxes of energy and nutrients. Thus, genetic diversity can have important ecological consequences at the population, community and ecosystem levels, and in some cases the effects are comparable in magnitude to the effects of species diversity. However, it is not clear how widely these results apply in nature, as studies to date have been biased towards manipulations of plant clonal diversity, and little is known about the relative importance of genetic diversity vs. other factors that influence ecological processes of interest. Future studies should focus not only on documenting the presence of genetic diversity effects but also on identifying underlying mechanisms and predicting when such effects are likely to occur in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Social evolution theory for microorganisms.

            Microorganisms communicate and cooperate to perform a wide range of multicellular behaviours, such as dispersal, nutrient acquisition, biofilm formation and quorum sensing. Microbiologists are rapidly gaining a greater understanding of the molecular mechanisms involved in these behaviours, and the underlying genetic regulation. Such behaviours are also interesting from the perspective of social evolution - why do microorganisms engage in these behaviours given that cooperative individuals can be exploited by selfish cheaters, who gain the benefit of cooperation without paying their share of the cost? There is great potential for interdisciplinary research in this fledgling field of sociomicrobiology, but a limiting factor is the lack of effective communication of social evolution theory to microbiologists. Here, we provide a conceptual overview of the different mechanisms through which cooperative behaviours can be stabilized, emphasizing the aspects most relevant to microorganisms, the novel problems that microorganisms pose and the new insights that can be gained from applying evolutionary theory to microorganisms.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Associational Resistance and Associational Susceptibility: Having Right or Wrong Neighbors

                Bookmark

                Author and article information

                Journal
                25411447
                4262158
                10.1098/rspb.2014.1268

                allele-specific quantitative PCR,phenotypic diversity,Alexandrium fundyense,associational resistance,grazing protection,harmful algal blooms

                Comments

                Comment on this article