5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of synbiotics on thyroid hormones, intestinal histomorphology, and heat shock protein 70 expression in broiler chickens reared under cyclic heat stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study examined effect of a dietary synbiotic supplement on the concentrations of plasma thyroid hormones, expressions of heat shock protein 70 (HSP70), and intestinal histomorphology in broiler chickens exposed to cyclic heat stress (HS). Three hundred and sixty day old male Ross 708 broiler chicks were randomly distributed among 3 dietary treatments containing a synbiotic (PoultryStar me US) at 0 (control), 0.5 (0.5×), and 1.0 (1.0×) g/kg. Each treatment contained 8 replicates of 15 birds each housed in floor pens in a temperature and lighting controlled room. Heat stimulation was established from days 15 to 42 at 32°C for 9 h daily. The results indicated that under the HS condition, both synbiotic fed groups had lower liver and hypothalamus HSP70 levels ( P < 0.001) compared to control group; however, HSP70 mRNA expression was not different among treatments ( P > 0.05). There were no treatment effects on the levels of triiodothyronine (T 3) and thyroxine (T 4) as well as T 3/T 4 ratio ( P > 0.05). Compared to controls, 1.0× HS broilers had greater villus height in the duodenum ( P < 0.01), and greater villus height and villus height:crypt depth ratios in the ileum ( P < 0.01). There were no differences among treatments on the measured intestinal parameters in the jejunum ( P > 0.05). The results suggest that the synbiotic may ameliorate the negative effects of HS on chicken health as indicated by the changes in the intestinal architecture and the levels of HSP70. Dietary synbiotic supplement could be a feasible nutritive strategy for the poultry industry to improve the health and welfare of chickens when exposed to hot environmental temperature.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice.

            Indigenous microbiota have several beneficial effects on host physiological functions; however, little is known about whether or not postnatal microbial colonization can affect the development of brain plasticity and a subsequent physiological system response. To test the idea that such microbes may affect the development of neural systems that govern the endocrine response to stress, we investigated hypothalamic-pituitary-adrenal (HPA) reaction to stress by comparing germfree (GF), specific pathogen free (SPF) and gnotobiotic mice. Plasma ACTH and corticosterone elevation in response to restraint stress was substantially higher in GF mice than in SPF mice, but not in response to stimulation with ether. Moreover, GF mice also exhibited reduced brain-derived neurotrophic factor expression levels in the cortex and hippocampus relative to SPF mice. The exaggerated HPA stress response by GF mice was reversed by reconstitution with Bifidobacterium infantis. In contrast, monoassociation with enteropathogenic Escherichia coli, but not with its mutant strain devoid of the translocated intimin receptor gene, enhanced the response to stress. Importantly, the enhanced HPA response of GF mice was partly corrected by reconstitution with SPF faeces at an early stage, but not by any reconstitution exerted at a later stage, which therefore indicates that exposure to microbes at an early developmental stage is required for the HPA system to become fully susceptible to inhibitory neural regulation. These results suggest that commensal microbiota can affect the postnatal development of the HPA stress response in mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Impact of Heat Stress on Poultry Production

              Simple Summary Due to the common occurrence of environmental stressors worldwide, many studies have investigated the detrimental effects of heat stress on poultry production. It has been shown that heat stress negatively affects the welfare and productivity of broilers and laying hens. However, further research is still needed to improve the knowledge of basic mechanisms associated to the negative effects of heat stress in poultry, as well as to develop effective interventions. Abstract Understanding and controlling environmental conditions is crucial to successful poultry production and welfare. Heat stress is one of the most important environmental stressors challenging poultry production worldwide. The detrimental effects of heat stress on broilers and laying hens range from reduced growth and egg production to decreased poultry and egg quality and safety. Moreover, the negative impact of heat stress on poultry welfare has recently attracted increasing public awareness and concern. Much information has been published on the effects of heat stress on productivity and immune response in poultry. However, our knowledge of basic mechanisms associated to the reported effects, as well as related to poultry behavior and welfare under heat stress conditions is in fact scarce. Intervention strategies to deal with heat stress conditions have been the focus of many published studies. Nevertheless, effectiveness of most of the interventions has been variable or inconsistent. This review focuses on the scientific evidence available on the importance and impact of heat stress in poultry production, with emphasis on broilers and laying hens.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                30 December 2019
                January 2020
                30 December 2019
                : 99
                : 1
                : 142-150
                Affiliations
                [* ]College of Animal Science and Technology, Southwest University, Chongqing 400715, China
                []Department of Animal Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
                []Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
                [§ ]USDA Agricultural Research Service, 125 South Russell Street, West Lafayette, IN 47907, USA
                [# ]Department of Animal and Food Science, Texas Tech University, Lubbock, TX 79409, USA
                Author notes
                [2 ]Corresponding author Heng-Wei.Cheng@ 123456ARS.USDA.GOV
                [1]

                These authors contributed equally to this work.

                Article
                S0032-5791(19)57858-0
                10.3382/ps/pez571
                7587863
                32416795
                0a2aaff2-cc01-404b-8eeb-02e32b955149
                © 2019 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 21 April 2019
                : 15 September 2019
                Categories
                Immunology, Health and Disease

                broiler chicken,heat stress,synbiotic,intestinal histomorphology,heat shock protein 70

                Comments

                Comment on this article