4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effectiveness of a novel, completely biomaterial valved pulmonary arterial conduit: An in vivo study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a pre-clinical assessment, the present study aimed to investigate the safety and effectiveness of a novel valved pulmonary arterial conduit constructed entirely from biomaterials by transplanting it in the outflow tract of the right ventricle in sheep. Under extracorporeal circulation, the valved pulmonary arterial conduit was used to replace the pulmonary artery of sheep with a beating heart. The performance was assessed at 30, 90 and 180 days post-surgery. Hemodynamic and structural changes were evaluated, and safety was assessed after 180 postoperative days. The hemodynamic effect and biosafety of the implant were further evaluated by observing the changes in various pressure indicators of the heart, echocardiographic results, anatomical and pathological examination results, liver and kidney functions, routine blood tests, a blood coagulation test, and other test results following implantation of the purely biotic valved conduit. The conduit was successfully implanted in 12 sheep and no mortality occurred postoperatively. During the 180-day follow-up, there was no obvious stenosis or regurgitation of the right ventricular outflow tract and pulmonary valve after valved conduit implantation. The findings of autopsy, pathology and laboratory examinations were unremarkable. The implantation of this biosynthetic vascular graft into animals meets the safety and effectiveness requirements for clinical application. This pulmonary arterial conduit has potential clinical application for children with complex congenital heart disease who require pulmonary artery reconstruction to achieve a radical cure.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue-engineered lungs for in vivo implantation.

          Because adult lung tissue has limited regeneration capacity, lung transplantation is the primary therapy for severely damaged lungs. To explore whether lung tissue can be regenerated in vitro, we treated lungs from adult rats using a procedure that removes cellular components but leaves behind a scaffold of extracellular matrix that retains the hierarchical branching structures of airways and vasculature. We then used a bioreactor to culture pulmonary epithelium and vascular endothelium on the acellular lung matrix. The seeded epithelium displayed remarkable hierarchical organization within the matrix, and the seeded endothelial cells efficiently repopulated the vascular compartment. In vitro, the mechanical characteristics of the engineered lungs were similar to those of native lung tissue, and when implanted into rats in vivo for short time intervals (45 to 120 minutes) the engineered lungs participated in gas exchange. Although representing only an initial step toward the ultimate goal of generating fully functional lungs in vitro, these results suggest that repopulation of lung matrix is a viable strategy for lung regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance.

            Biologic scaffolds composed of extracellular matrix (ECM) are widely used in both preclinical animal studies and in many clinical applications to repair and reconstruct tissues. Recently, 3-dimensional ECM constructs have been investigated for use in whole organ engineering applications. ECM scaffolds are prepared by decellularization of mammalian tissues and the ECM provides natural biologic cues that facilitate the restoration of site appropriate and functional tissue. Preservation of the native ECM constituents (i.e., three-dimensional ultrastructure and biochemical composition) during the decellularization process would theoretically result in the ideal scaffold for tissue remodeling. However, all methods of decellularization invariably disrupt the ECM to some degree. Decellularization of tissues and organs for the production of ECM bioscaffolds requires a balance between maintaining native ECM structure and the removal of cellular materials such as DNA, mitochondria, membrane lipids, and cytosolic proteins. These remnant cellular components can elicit an adverse inflammatory response and inhibit constructive remodeling if not adequately removed. Many variables including cell density, matrix density, thickness, and morphology can affect the extent of tissue and organ decellularization and thus the integrity and physical properties of the resulting ECM scaffold. This review describes currently used decellularization techniques, and the effects of these techniques upon the host response to the material.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells.

              L Flynn (2010)
              The development of an engineered adipose tissue substitute, capable of supporting reliable, predictable, and complete fat tissue formation, would be of significant value in the fields of plastic and reconstructive surgery. Towards the goal of engineering an optimized microenvironment for adipogenesis, a decellularization strategy was developed for adipose tissue, which yielded 3-D scaffolds with preserved extracellular matrix architecture. A significant volume of scaffolding material could be obtained from a human tissue source that is commonly discarded. Histology, immunohistochemistry, and scanning electron microscopy confirmed the efficacy and reproducibility of the approach, and also indicated that the basement membrane was conserved in the processed matrix, including laminin and collagen type IV. Seeding experiments with human adipose-derived stem cells indicated that the decellularized adipose tissue (DAT) provided an inductive microenvironment for adipogenesis, supporting the expression of the master regulators PPARgamma and CEBPalpha, without the need for exogenous differentiation factors. High levels of adipogenic gene expression and glycerol-3-phosphate dehydrogenase activity were observed in the induced DAT scaffolds, as compared to cells grown in monolayer or cell aggregate culture. The protein data emphasized the importance of the cell donor source in the development of tissue-engineering strategies for large-volume soft tissue regeneration.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                September 2020
                19 June 2020
                19 June 2020
                : 20
                : 3
                : 1935-1942
                Affiliations
                [1 ]Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
                [2 ]Ministry of Product Development, Hangzhou Jiahe Zhongbang Biotechnology Co., Ltd., Hangzhou, Zhejiang 311100, P.R. China
                Author notes
                Correspondence to: Dr Xufeng Wei or Dr Shiqiang Yu, Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xincheng, Xi'an, Shaanxi 710032, P.R. China weixf2004@ 123456hotmail.com yushiq@ 123456fmmu.edu.cn

                *Contributed equally

                Article
                ETM-0-0-8908
                10.3892/etm.2020.8908
                7401300
                0a34c291-a620-41bd-a6cf-4a907657af15
                Copyright: © Ren et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 04 December 2019
                : 28 February 2020
                Categories
                Articles

                Medicine
                congenital heart disease,completely biomaterial valved pulmonary arterial conduit,hemodynamics,sheep,transplantation

                Comments

                Comment on this article