8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      3D Virtual Reality Implementation of Tourist Attractions Based on the Deep Belief Neural Network

      research-article
      Computational Intelligence and Neuroscience
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In today's society, information technology is widely used, and virtual reality technology, as one of the emerging frontier technologies, has entered a stage of rapid development. Virtual reality is the use of computer technology to simulate the real-life environment into a virtual simulation environment, with the help of special equipment to realize the natural interaction between users and technical environment, in which the tourism industry is the most widely used. In order to realize 3D virtual reality of tourist attractions and improve users' immersive experience in the process of interaction, the deep belief neural network is introduced to realize the target recognition and reconstruction in virtual reality. The results show that the algorithm has excellent performance in target recognition and target reconstruction, and deep belief networks improve the accuracy by 0.57% and 0.81% and the accuracy by 0.21% and 2.06%, respectively, compared with the current optimal algorithm in target recognition of 12 and 20 view regular projection images. Compared with the current optimal algorithm, deep belief networks are reduced by 0.2%, 3.7%, and 0.6%, respectively. The accuracy index was increased by 2%, 0.1%, and 0.1%, respectively. The above results show that the proposed algorithm based on the deep belief neural network can realize 3D virtual reality of complex scenes such as tourist attractions according to its excellent performance.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          ImageNet classification with deep convolutional neural networks

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep convolutional neural network based medical image classification for disease diagnosis

            Medical image classification plays an essential role in clinical treatment and teaching tasks. However, the traditional method has reached its ceiling on performance. Moreover, by using them, much time and effort need to be spent on extracting and selecting classification features. The deep neural network is an emerging machine learning method that has proven its potential for different classification tasks. Notably, the convolutional neural network dominates with the best results on varying image classification tasks. However, medical image datasets are hard to collect because it needs a lot of professional expertise to label them. Therefore, this paper researches how to apply the convolutional neural network (CNN) based algorithm on a chest X-ray dataset to classify pneumonia. Three techniques are evaluated through experiments. These are linear support vector machine classifier with local rotation and orientation free features, transfer learning on two convolutional neural network models: Visual Geometry Group i.e., VGG16 and InceptionV3, and a capsule network training from scratch. Data augmentation is a data preprocessing method applied to all three methods. The results of the experiments show that data augmentation generally is an effective way for all three algorithms to improve performance. Also, Transfer learning is a more useful classification method on a small dataset compared to a support vector machine with oriented fast and rotated binary (ORB) robust independent elementary features and capsule network. In transfer learning, retraining specific features on a new target dataset is essential to improve performance. And, the second important factor is a proper network complexity that matches the scale of the dataset.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Three-dimensional memristor circuits as complex neural networks

                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Intell Neurosci
                Comput Intell Neurosci
                cin
                Computational Intelligence and Neuroscience
                Hindawi
                1687-5265
                1687-5273
                2021
                11 September 2021
                : 2021
                : 9004797
                Affiliations
                Academy of Design Arts, Xijing University, Xi'an 710123, Shannxi, China
                Author notes

                Academic Editor: Syed Hassan Ahmed

                Author information
                https://orcid.org/0000-0002-4431-5536
                Article
                10.1155/2021/9004797
                8452428
                34552628
                0a6042a4-3ba4-46da-a40e-2a14a247165f
                Copyright © 2021 Fuli Song.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 July 2021
                : 30 August 2021
                : 1 September 2021
                Funding
                Funded by: Xijing College Research Project
                Award ID: XJ180205
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article