5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries

      , , , ,
      Energies
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lithium-ion batteries are widely used as effective energy storage and have become the main component of power supply systems. Accurate battery state prediction is key to ensuring reliability and has significant guidance for optimizing the performance of battery power systems and replacement. Due to the complex and dynamic operations of lithium-ion batteries, the state parameters change with either the working condition or the aging process. The accuracy of online state prediction is difficult to improve, which is an urgent issue that needs to be solved to ensure a reliable and safe power supply. Currently, with the emergence of artificial intelligence (AI), battery state prediction methods based on data-driven methods have high precision and robustness to improve state prediction accuracy. The demanding characteristics of test time are reduced, and this has become the research focus in the related fields. Therefore, the convolutional neural network (CNN) was improved in the data modeling process to establish a deep convolutional neural network ensemble transfer learning (DCNN-ETL) method, which plays a significant role in battery state prediction. This paper reviews and compares several mathematical DCNN models. The key features are identified on the basis of the modeling capability for the state prediction. Then, the prediction methods are classified on the basis of the identified features. In the process of deep learning (DL) calculation, specific criteria for evaluating different modeling accuracy levels are defined. The identified features of the state prediction model are taken advantage of to give relevant conclusions and suggestions. The DCNN-ETL method is selected to realize the reliable state prediction of lithium-ion batteries.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: not found
          • Article: not found

          Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning

            Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here, we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS)—a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis—with Gaussian process machine learning. Over 20,000 EIS spectra of commercial Li-ion batteries are collected at different states of health, states of charge and temperatures—the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ENERGA
                Energies
                Energies
                MDPI AG
                1996-1073
                July 2022
                July 11 2022
                : 15
                : 14
                : 5053
                Article
                10.3390/en15145053
                bd20cc1e-ba5e-4165-8fa4-9b4db842d85e
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article