66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Keratinase Production by Three Bacillus spp. Using Feather Meal and Whole Feather as Substrate in a Submerged Fermentation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Three Bacillus species ( B. subtilis LFB-FIOCRUZ 1270, B. subtilis LFB-FIOCRUZ 1273, and B. licheniformis LFB-FIOCRUZ 1274), isolated from the poultry industry, were evaluated for keratinase production using feathers or feather meal as the sole carbon and nitrogen sources in a submerged fermentation. The three Bacillus spp. produced extracellular keratinases and peptidases after 7 days. Feather meal was the best substrate for keratinase and peptidase production in B. subtilis 1273, with 412 U/mL and 463 U/ml. The three strains were able to degrade feather meal (62–75%) and feather (40–95%) producing 3.9–4.4 mg/ml of soluble protein in feather meal medium and 1.9–3.3 mg/ml when feather medium was used. The three strains produced serine peptidases with keratinase and gelatinase activity. B. subtilis 1273 was the strain which exhibited the highest enzymatic activity.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial keratinases and their prospective applications: an overview.

          Microbial keratinases have become biotechnologically important since they target the hydrolysis of highly rigid, strongly cross-linked structural polypeptide "keratin" recalcitrant to the commonly known proteolytic enzymes trypsin, pepsin and papain. These enzymes are largely produced in the presence of keratinous substrates in the form of hair, feather, wool, nail, horn etc. during their degradation. The complex mechanism of keratinolysis involves cooperative action of sulfitolytic and proteolytic systems. Keratinases are robust enzymes with a wide temperature and pH activity range and are largely serine or metallo proteases. Sequence homologies of keratinases indicate their relatedness to subtilisin family of serine proteases. They stand out among proteases since they attack the keratin residues and hence find application in developing cost-effective feather by-products for feed and fertilizers. Their application can also be extended to detergent and leather industries where they serve as specialty enzymes. Besides, they also find application in wool and silk cleaning; in the leather industry, better dehairing potential of these enzymes has led to the development of greener hair-saving dehairing technology and personal care products. Further, their prospective application in the challenging field of prion degradation would revolutionize the protease world in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp.

            A novel keratin-degrading bacterium Stenotrophomonas sp. strain D-1, isolated from deer fur, produced two types of extracellular proteins: proteolytic and disulfide bond-reducing. The results on the biochemical properties suggest that this protease belongs to the serine protease, and the disulfide bond-reducing protein could be the disulfide reductase type. None of these enzymes showed keratinolytic activity independently. However, after mixing of the two enzymes, the keratinolytic activity was increased tremendously (more than 50-fold) over that of the protease only. This keratinolytic activity was more than 2-fold higher than that of the combination with proteinase K (also known for its high keratinolytic activity). Since the two enzymes discovered in this study acted cooperatively and resulted in higher keratinolytic activity, a new mechanism of keratin degradation has been revealed. To our knowledge, this is the first report on the cooperative action of two enzymes resulting in the effective degradation of keratin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: biochemical characterization and application in feather degradation and dehairing of hides.

              A novel dimeric 58 kDa keratinase is reported from Bacillus licheniformis ER-15. The bacterium produced 244 U/ml keratinase in 48 h which was increased by eight fold (1962 U/ml) after medium optimization by one-variable-at-a-time and response surface methodology. Enzyme was concentrated by ultrafiltration followed by acetone precipitation and purified by gel filtration chromatography. It had subunit of 30 and 28 kDa and pI of 8.4. Enzyme was maximally active at pH 11 and 70 degrees C. It hydrolyzed various complex proteins viz. haemoglobin, feather, hooves, fibrin and meat protein. It was a thiol activated serine protease and 6.25-fold enhancement in activity was observed in presence of 5mM mercaptoethanol. Nearly 1200 U keratinase degraded 1.5 g feather in 12h at pH 8, 50 degrees C in redox free environment. This enzyme also dehaired buffalo hide within 16 h in presence of 3% Ca (OH)(2). (c) 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Enzyme Res
                ER
                Enzyme Research
                SAGE-Hindawi Access to Research
                2090-0406
                2090-0414
                2011
                1 August 2011
                : 2011
                : 523780
                Affiliations
                1Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPPG), Bloco I, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
                2Centro de Pesquisas Avicolas, Instituto Federal do Rio de Janeiro, Campus Pinheiral, Rua José Breves, N° 550, Centro, 27197-000 Pinheiral, RJ, Brazil
                3Instituto Federal de Educação Ciência e Tecnologia do Rio de Janeiro, Campus Rio de Janeiro, Rua Senador Furtado n° 121, 20270-021 Maracanã, RJ, Brazil
                Author notes
                *Alane Beatriz Vermelho: abvermelho@ 123456micro.ufrj.br

                Academic Editor: Claudiu T. Supuran

                Article
                10.4061/2011/523780
                3148598
                21822479
                0a8d32b0-a606-4c58-97aa-f56601f931c4
                Copyright © 2011 Ana Maria Mazotto et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 April 2011
                : 27 May 2011
                Categories
                Research Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article