23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From Nucleotides to Satellite Imagery: Approaches to Identify and Manage the Invasive Pathogen Xylella fastidiosa and Its Insect Vectors in Europe

      , , , , ,
      Sustainability
      MDPI AG

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biological invasions represent some of the most severe threats to local communities and ecosystems. Among invasive species, the vector-borne pathogen Xylella fastidiosa is responsible for a wide variety of plant diseases and has profound environmental, social and economic impacts. Once restricted to the Americas, it has recently invaded Europe, where multiple dramatic outbreaks have highlighted critical challenges for its management. Here, we review the most recent advances on the identification, distribution and management of X. fastidiosa and its insect vectors in Europe through genetic and spatial ecology methodologies. We underline the most important theoretical and technological gaps that remain to be bridged. Challenges and future research directions are discussed in the light of improving our understanding of this invasive species, its vectors and host–pathogen interactions. We highlight the need of including different, complimentary outlooks in integrated frameworks to substantially improve our knowledge on invasive processes and optimize resources allocation. We provide an overview of genetic, spatial ecology and integrated approaches that will aid successful and sustainable management of one of the most dangerous threats to European agriculture and ecosystems.

          Related collections

          Most cited references209

          • Record: found
          • Abstract: found
          • Article: not found

          The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned?

          Abstract Objectives To provide an overview of the three major deadly coronaviruses and identify areas for improvement of future preparedness plans, as well as provide a critical assessment of the risk factors and actionable items for stopping their spread, utilizing lessons learned from the first two deadly coronavirus outbreaks, as well as initial reports from the current novel coronavirus (COVID-19) epidemic in Wuhan, China. Methods Utilizing the Centers for Disease Control and Prevention (CDC, USA) website, and a comprehensive review of PubMed literature, we obtained information regarding clinical signs and symptoms, treatment and diagnosis, transmission methods, protection methods and risk factors for Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS) and COVID-19. Comparisons between the viruses were made. Results Inadequate risk assessment regarding the urgency of the situation, and limited reporting on the virus within China has, in part, led to the rapid spread of COVID-19 throughout mainland China and into proximal and distant countries. Compared with SARS and MERS, COVID-19 has spread more rapidly, due in part to increased globalization and the focus of the epidemic. Wuhan, China is a large hub connecting the North, South, East and West of China via railways and a major international airport. The availability of connecting flights, the timing of the outbreak during the Chinese (Lunar) New Year, and the massive rail transit hub located in Wuhan has enabled the virus to perforate throughout China, and eventually, globally. Conclusions We conclude that we did not learn from the two prior epidemics of coronavirus and were ill-prepared to deal with the challenges the COVID-19 epidemic has posed. Future research should attempt to address the uses and implications of internet of things (IoT) technologies for mapping the spread of infection.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Environmental DNA metabarcoding: Transforming how we survey animal and plant communities

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Species distribution models and ecological theory: A critical assessment and some possible new approaches

                Bookmark

                Author and article information

                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                June 2020
                June 02 2020
                : 12
                : 11
                : 4508
                Article
                10.3390/su12114508
                0ab9b69c-044d-4219-bf36-73e390b8dd9a
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article