7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improvement of Oxazolone-Induced Ulcerative Colitis in Rats Using Andrographolide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ulcerative colitis (UC) is usually accompanied with symptoms of abdominal pain, diarrhea, and bloody stool, which impair the quality of life of patients. Previous studies have shown that Andrographis paniculata extracts, which have andrographolide (AND) as their main compound, can relieve UC symptoms in patients. The aim of the study was to investigate the alleviating effect of AND on UC using the oxazolone (OXZ)-induced UC rat model. A total of 66 healthy male Sprague Dawley rats were used to evaluate the efficacy and mechanism of AND on UC (n = 11 per group) and grouped into control, model, SASP (sulfasalazine, positive control group, 500 mg/kg), AND-L (40 mg/kg), AND-M (80 mg/kg), and AND-H (120 mg/kg). The colonic disease activity index (DAI), colon length, spleen coefficient, pathological damage, and inflammation-related cytokine and protein expression levels were used as indices for evaluation. Results showed that the AND groups had reduced DAI and mortality, and significantly improved colon length and spleen coefficient compared with the model group. Furthermore, OXZ-induced histological injury was relieved significantly after AND treatment due to an improved crypt structure and reduced infiltration of inflammatory cells. Moreover, AND inhibited myeloperoxidase (MPO) activity and the secretion of interleukin-4 (IL-4), IL-13, and tumor necrosis factor α (TNF-α). The results of the anti-inflammatory mechanism revealed that AND blocked the signal transduction by reducing IL-4/IL-13 specific binding to IL-4 receptor (IL-4R) and inhibiting the phosphorylation of the signal transducer and activator of transcription 6 (p-STAT6). In conclusion, aside from natural plants, AND may be a candidate ingredient for UC therapy.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution.

          Ulcerative colitis (UC) is characterized by a Th2 immune response with inflammation and epithelial barrier dysfunction. So far, Th2 cytokines have not been shown to directly influence epithelial barrier function. Lamina propria mononuclear cells (LPMCs) were stimulated and interleukin (IL)-13 was measured by enzyme-linked immunosorbent assay. Functional IL-13 and IL-4 effects were studied on HT-29/B6 colonic epithelial cells in Ussing chambers and by conductance scanning. Apoptosis was detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays. IL-13/IL-4 receptors were analyzed by reverse-transcription polymerase chain reaction and immunofluorescence. Western blotting combined with immunofluorescence was used to detect tight junction proteins. Furthermore, restitution velocity was measured. Finally, mucosal biopsy specimens from patients with UC were compared with cultured cells for these features. LPMCs from patients with UC produced large amounts of IL-13 (985 +/- 73 pg/mL), much more than from controls or patients with Crohn's disease. IL-13Ralpha1 and IL-4Ralpha receptors were present in HT-29/B6 cells and colonic epithelial cells of control patients and patients with UC. IL-13 had a dose-dependent effect on transepithelial resistance of HT-29/B6 monolayers (reduction to 60% +/- 4%), whereas IL-4 had no effect. This was due to an increased number of apoptotic cells (5.6-fold +/- 0.9-fold) and an increased expression of the pore-forming tight junction protein claudin-2 to 295% +/- 37%, both of which contributed equally. Finally, epithelial restitution velocity decreased from 15.1 +/- 0.6 to 10.6 +/- 0.5 microm/h after treatment with IL-13. Parallel changes were observed in human samples, with an increase in claudin-2 expression to 956% +/- 252%. IL-13 was identified as an important effector cytokine in UC that impairs epithelial barrier function by affecting epithelial apoptosis, tight junctions, and restitution velocity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxazolone Colitis: A Murine Model of  T Helper Cell Type 2 Colitis Treatable with Antibodies to Interleukin 4

            In this study we describe oxazolone colitis, a new form of experimental colitis. This model is induced in SJL/J mice by the rectal instillation of the haptenating agent, oxazolone, and is characterized by a rapidly developing colitis confined to the distal half of the colon; it consists of a mixed neutrophil/lymphocyte infiltration limited to the superficial layer of the mucosa which is associated with ulceration. Oxazolone colitis is a T helper cell type 2 (Th2)-mediated process since stimulated T cells from lesional tissue produce markedly increased amounts of interleukin (IL)-4 and IL-5; in addition, anti–IL-4 administration leads to a striking amelioration of disease, whereas anti–IL-12 administration either has no effect or exacerbates disease. Finally, this proinflammatory Th2 cytokine response is counterbalanced by a massive transforming growth factor-β (TGF-β) response which limits both the extent and duration of disease: lesional (distal) T cells manifest a 20–30-fold increase in TGF-β production, whereas nonlesional (proximal) T cells manifest an even greater 40–50-fold increase. In addition, anti–TGF-β administration leads to more severe inflammation which now involves the entire colon. The histologic features and distribution of oxazolone colitis have characteristics that resemble ulcerative colitis (UC) and thus sharply distinguish this model from most other models, which usually resemble Crohn's disease. This feature of oxazolone colitis as well as its cytokine profile have important implications to the pathogenesis and treatment of UC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells.

              Oxazolone colitis (OC) is an experimental colitis that has a histologic resemblance to human ulcerative colitis. Here we show that IL-13 production is a significant pathologic factor in OC since its neutralization by IL-13Ralpha2-Fc administration prevents colitis. We further show that OC is mediated by NK-T cells since it can be induced neither in mice depleted of NK-T cells nor in mice that cannot present antigen to NK-T cells and mice lacking an NK-T cell-associated TCR. Finally, we show that NK-T cells are the source of the IL-13, since they produce IL-13 upon stimulation by alpha-galactosylceramide, an NK-T cell-specific antigen. These data thus describe a cellular mechanism underlying an experimental colitis that may explain the pathogenesis of ulcerative colitis.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                24 December 2019
                January 2020
                : 25
                : 1
                : 76
                Affiliations
                Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China; mine90@ 123456163.com (L.Z.); 18616024782@ 123456163.com (N.C.); wyxzd1314@ 123456163.com (Y.W.); vera105370@ 123456163.com (C.W.); chengxuemei1963@ 123456163.com (X.C.)
                Author notes
                [* ]Correspondence: wchcxm@ 123456shutcm.edu.cn or wchcxm@ 123456hotmail.com ; Tel.: +86-21-51322511; Fax: +86-21-51322519
                Author information
                https://orcid.org/0000-0001-7578-4856
                Article
                molecules-25-00076
                10.3390/molecules25010076
                6982790
                31878303
                0ad26824-9a3b-4d8b-beb5-47ad09fc1a2f
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 November 2019
                : 21 December 2019
                Categories
                Article

                andrographolide,oxazolone,ulcerative colitis,il-4,il-13,il-4r/stat6

                Comments

                Comment on this article