18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complex Coordination of Cell Plasticity by a PGC-1α-controlled Transcriptional Network in Skeletal Muscle

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skeletal muscle cells exhibit an enormous plastic capacity in order to adapt to external stimuli. Even though our overall understanding of the molecular mechanisms that underlie phenotypic changes in skeletal muscle cells remains poor, several factors involved in the regulation and coordination of relevant transcriptional programs have been identified in recent years. For example, the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a central regulatory nexus in the adaptation of muscle to endurance training. Intriguingly, PGC-1α integrates numerous signaling pathways and translates their activity into various transcriptional programs. This selectivity is in part controlled by differential expression of PGC-1α variants and post-translational modifications of the PGC-1α protein. PGC-1α-controlled activation of transcriptional networks subsequently enables a spatio-temporal specification and hence allows a complex coordination of changes in metabolic and contractile properties, protein synthesis and degradation rates and other features of trained muscle. In this review, we discuss recent advances in our understanding of PGC-1α-regulated skeletal muscle cell plasticity in health and disease.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha.

          Activation of AMP-activated kinase (AMPK) in skeletal muscle increases glucose uptake, fatty acid oxidation, and mitochondrial biogenesis by increasing gene expression in these pathways. However, the transcriptional components that are directly targeted by AMPK are still elusive. The peroxisome-proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) has emerged as a master regulator of mitochondrial biogenesis; furthermore, it has been shown that PGC-1alpha gene expression is induced by exercise and by chemical activation of AMPK in skeletal muscle. Using primary muscle cells and mice deficient in PGC-1alpha, we found that the effects of AMPK on gene expression of glucose transporter 4, mitochondrial genes, and PGC-1alpha itself are almost entirely dependent on the function of PGC-1alpha protein. Furthermore, AMPK phosphorylates PGC-1alpha directly both in vitro and in cells. These direct phosphorylations of the PGC-1alpha protein at threonine-177 and serine-538 are required for the PGC-1alpha-dependent induction of the PGC-1alpha promoter. These data indicate that AMPK phosphorylation of PGC-1alpha initiates many of the important gene regulatory functions of AMPK in skeletal muscle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of exercise and PGC1alpha in inflammation and chronic disease.

            Inadequate physical activity is linked to many chronic diseases. But the mechanisms that tie muscle activity to health are unclear. The transcriptional coactivator PGC1alpha has recently been shown to regulate several exercise-associated aspects of muscle function. We propose that this protein controls muscle plasticity, suppresses a broad inflammatory response and mediates the beneficial effects of exercise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha.

              Ischaemia of the heart, brain and limbs is a leading cause of morbidity and mortality worldwide. Hypoxia stimulates the secretion of vascular endothelial growth factor (VEGF) and other angiogenic factors, leading to neovascularization and protection against ischaemic injury. Here we show that the transcriptional coactivator PGC-1alpha (peroxisome-proliferator-activated receptor-gamma coactivator-1alpha), a potent metabolic sensor and regulator, is induced by a lack of nutrients and oxygen, and PGC-1alpha powerfully regulates VEGF expression and angiogenesis in cultured muscle cells and skeletal muscle in vivo. PGC-1alpha-/- mice show a striking failure to reconstitute blood flow in a normal manner to the limb after an ischaemic insult, whereas transgenic expression of PGC-1alpha in skeletal muscle is protective. Surprisingly, the induction of VEGF by PGC-1alpha does not involve the canonical hypoxia response pathway and hypoxia inducible factor (HIF). Instead, PGC-1alpha coactivates the orphan nuclear receptor ERR-alpha (oestrogen-related receptor-alpha) on conserved binding sites found in the promoter and in a cluster within the first intron of the VEGF gene. Thus, PGC-1alpha and ERR-alpha, major regulators of mitochondrial function in response to exercise and other stimuli, also control a novel angiogenic pathway that delivers needed oxygen and substrates. PGC-1alpha may provide a novel therapeutic target for treating ischaemic diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                09 November 2015
                2015
                : 6
                : 325
                Affiliations
                Biozentrum, University of Basel Basel, Switzerland
                Author notes

                Edited by: Russell T. Hepple, McGill University, Canada

                Reviewed by: Espen Spangenburg, East Carolina University, USA; Aaron Paul Russell, Aaron Russell, Australia

                *Correspondence: Christoph Handschin christoph.handschin@ 123456unibas.ch

                This article was submitted to Striated Muscle Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2015.00325
                4639707
                26617528
                0ae78819-9f1d-4673-918b-b0c2b5908976
                Copyright © 2015 Kupr and Handschin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 August 2015
                : 27 October 2015
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 58, Pages: 7, Words: 5613
                Funding
                Funded by: European Research Council 10.13039/501100000781
                Award ID: 616830-MUSCLE_NET
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung 10.13039/501100001711
                Funded by: SystemsX.ch
                Funded by: Swiss Society for Research on Muscle Diseases
                Funded by: Novartis Stiftung für Medizinisch-Biologische Forschung 10.13039/501100004784
                Funded by: Fellowships for Excellence
                Categories
                Physiology
                Mini Review

                Anatomy & Physiology
                skeletal muscle,transcriptional regulation,pgc-1α,exercise,metabolism,co-regulator

                Comments

                Comment on this article