11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bioengineering Approaches for the Advanced Organoid Research

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references226

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.

          Differentiated cells can be reprogrammed to an embryonic-like state by transfer of nuclear contents into oocytes or by fusion with embryonic stem (ES) cells. Little is known about factors that induce this reprogramming. Here, we demonstrate induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions. Unexpectedly, Nanog was dispensable. These cells, which we designated iPS (induced pluripotent stem) cells, exhibit the morphology and growth properties of ES cells and express ES cell marker genes. Subcutaneous transplantation of iPS cells into nude mice resulted in tumors containing a variety of tissues from all three germ layers. Following injection into blastocysts, iPS cells contributed to mouse embryonic development. These data demonstrate that pluripotent stem cells can be directly generated from fibroblast cultures by the addition of only a few defined factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome engineering using the CRISPR-Cas9 system.

            Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.

              The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. We have recently demonstrated the presence of about six cycling Lgr5(+) stem cells at the bottoms of small-intestinal crypts. Here we describe the establishment of long-term culture conditions under which single crypts undergo multiple crypt fission events, while simultanously generating villus-like epithelial domains in which all differentiated cell types are present. Single sorted Lgr5(+) stem cells can also initiate these cryptvillus organoids. Tracing experiments indicate that the Lgr5(+) stem-cell hierarchy is maintained in organoids. We conclude that intestinal cryptvillus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                November 2021
                September 24 2021
                November 2021
                : 33
                : 45
                : 2007949
                Affiliations
                [1 ]Epigenome Dynamics Control Research Center School of Pharmacy Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon 16419 Republic of Korea
                [2 ]Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Road Piscataway NJ 08854 USA
                Article
                10.1002/adma.202007949
                34561899
                0b56f3a6-4302-4d29-8264-582dfc5af92a
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article