1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of soluble receptor for advanced glycation end-products (sRAGE) in the general population and patients with diabetes mellitus with a focus on renal function and overall outcome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references172

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data

          High-throughput sequencing platforms are generating massive amounts of genetic variation data for diverse genomes, but it remains a challenge to pinpoint a small subset of functionally important variants. To fill these unmet needs, we developed the ANNOVAR tool to annotate single nucleotide variants (SNVs) and insertions/deletions, such as examining their functional consequence on genes, inferring cytogenetic bands, reporting functional importance scores, finding variants in conserved regions, or identifying variants reported in the 1000 Genomes Project and dbSNP. ANNOVAR can utilize annotation databases from the UCSC Genome Browser or any annotation data set conforming to Generic Feature Format version 3 (GFF3). We also illustrate a ‘variants reduction’ protocol on 4.7 million SNVs and indels from a human genome, including two causal mutations for Miller syndrome, a rare recessive disease. Through a stepwise procedure, we excluded variants that are unlikely to be causal, and identified 20 candidate genes including the causal gene. Using a desktop computer, ANNOVAR requires ∼4 min to perform gene-based annotation and ∼15 min to perform variants reduction on 4.7 million variants, making it practical to handle hundreds of human genomes in a day. ANNOVAR is freely available at http://www.openbioinformatics.org/annovar/ .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical review: The role of advanced glycation end products in progression and complications of diabetes.

            Diabetic complications appear to be multifactorial in origin, but in particular, the biochemical process of advanced glycation, which is accelerated in diabetes as a result of chronic hyperglycemia and increased oxidative stress, has been postulated to play a central role in these disorders. Advanced glycation involves the generation of a heterogenous group of chemical moieties known as advanced glycated end products (AGEs), this reaction occurring as a result of a nonenzymatic reaction with glucose interacting with proteins, lipids, and nucleic acids, and involves key intermediates such as methylglyoxal. In this review we report on how these AGEs may exert deleterious effects in diabetes, as well as address current strategies to interrupt the formation or action of AGEs. First, AGEs act directly to induce cross-linking of long-lived proteins such as collagen to promote vascular stiffness, and, thus, alter vascular structure and function. Second, AGEs can interact with certain receptors, such as the receptor for AGE, to induce intracellular signaling that leads to enhanced oxidative stress and elaboration of key proinflammatory and prosclerotic cytokines. Over the last decade, a large number of preclinical studies have been performed, targeting the formation and degradation of AGEs, as well as the interaction of these AGEs with receptors such as the receptor for AGE. It is hoped that over the next few years, some of these promising therapies will be fully evaluated in the clinical context with the ultimate aim to reduce the major economical and medical burden of diabetes, its vascular complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              RAGE (Receptor for Advanced Glycation Endproducts), RAGE Ligands, and their role in Cancer and Inflammation

              The Receptor for Advanced Glycation Endproducts [RAGE] is an evolutionarily recent member of the immunoglobulin super-family, encoded in the Class III region of the major histocompatability complex. RAGE is highly expressed only in the lung at readily measurable levels but increases quickly at sites of inflammation, largely on inflammatory and epithelial cells. It is found either as a membrane-bound or soluble protein that is markedly upregulated by stress in epithelial cells, thereby regulating their metabolism and enhancing their central barrier functionality. Activation and upregulation of RAGE by its ligands leads to enhanced survival. Perpetual signaling through RAGE-induced survival pathways in the setting of limited nutrients or oxygenation results in enhanced autophagy, diminished apoptosis, and (with ATP depletion) necrosis. This results in chronic inflammation and in many instances is the setting in which epithelial malignancies arise. RAGE and its isoforms sit in a pivotal role, regulating metabolism, inflammation, and epithelial survival in the setting of stress. Understanding the molecular structure and function of it and its ligands in the setting of inflammation is critically important in understanding the role of this receptor in tumor biology.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Clinical Laboratory Sciences
                Critical Reviews in Clinical Laboratory Sciences
                Informa UK Limited
                1040-8363
                1549-781X
                February 17 2021
                July 15 2020
                February 17 2021
                : 58
                : 2
                : 113-130
                Affiliations
                [1 ]Department of Nephrology, Ghent University Hospital, Ghent, Belgium
                [2 ]Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
                [3 ]Department of Internal Medicine, Ghent University, Ghent, Belgium
                [4 ]Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
                [5 ]Department of Dermatology, Ghent University Hospital, Ghent, Belgium
                [6 ]Department of Geriatrics, Ghent University Hospital, Ghent, Belgium
                [7 ]Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
                [8 ]Research Foundation Flanders, Brussels, Belgium
                Article
                10.1080/10408363.2020.1791045
                32669010
                0b7e84b4-9abc-449b-a202-e652f723b61a
                © 2021
                History

                Comments

                Comment on this article