40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global host metabolic response to Plasmodium vivax infection: a 1H NMR based urinary metabonomic study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Plasmodium vivax is responsible for the majority of malarial infection in the Indian subcontinent. This species of the parasite is generally believed to cause a relatively benign form of the disease. However, recent reports from different parts of the world indicate that vivax malaria can also have severe manifestation. Host response to the parasite invasion is thought to be an important factor in determining the severity of manifestation. In this paper, attempt was made to determine the host metabolic response associated with P. vivax infection by means of NMR spectroscopy-based metabonomic techniques in an attempt to better understand the disease pathology.

          Methods

          NMR spectroscopy of urine samples from P. vivax-infected patients, healthy individuals and non-malarial fever patients were carried out followed by multivariate statistical analysis. Two data analysis techniques were employed, namely, Principal Component Analysis [PCA] and Orthogonal Projection to Latent Structure Discriminant Analysis [OPLS-DA]. Several NMR signals from the urinary metabolites were further selected for univariate comparison among the classes.

          Results

          The urine metabolic profiles of P. vivax-infected patients were distinct from those of healthy individuals as well as of non-malarial fever patients. A highly predictive model was constructed from urine profile of malarial and non-malarial fever patients. Several metabolites were found to be varying significantly across these cohorts. Urinary ornithine seems to have the potential to be used as biomarkers of vivax malaria. An increasing trend in pipecolic acid was also observed. The results suggest impairment in the functioning of liver as well as impairment in urea cycle.

          Conclusions

          The results open up a possibility of non-invasive analysis and diagnosis of P. vivax using urine metabolic profile. Distinct variations in certain metabolites were recorded, and amongst these, ornithine may have the potential of being used as biomarker of malaria. Pipecolic acid also showed increasing trend in the malaria patient compared to the other groups.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical review: Severe malaria

          Malaria represents a medical emergency because it may rapidly progress to complications and death without prompt and appropriate treatment. Severe malaria is almost exclusively caused by Plasmodium falciparum. The incidence of imported malaria is increasing and the case fatality rate remains high despite progress in intensive care and antimalarial treatment. Clinical deterioration usually appears 3–7 days after onset of fever. Complications involve the nervous, respiratory, renal, and/or hematopoietic systems. Metabolic acidosis and hypoglycemia are common systemic complications. Intravenous quinine and quinidine are the most widely used drugs in the initial treatment of severe falciparum malaria, whereas artemisinin derivatives are currently recommended for quinine-resistant cases. As soon as the patient is clinically stable and able to swallow, oral treatment should be given. The intravascular volume should be maintained at the lowest level sufficient for adequate systemic perfusion to prevent development of acute respiratory distress syndrome. Renal replacement therapy should be initiated early. Exchange blood transfusion has been suggested for the treatment of patients with severe malaria and high parasitemia. For early diagnosis, it is paramount to consider malaria in every febrile patient with a history of travel in an area endemic for malaria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Severe Plasmodium vivax malaria: a report on serial cases from Bikaner in northwestern India.

            Epidemiologic studies and clinical description of severe Plasmodium vivax malaria in adults living in malaria-endemic areas are rare and more attention is needed to understand the dynamics and its interaction with the immune system. This observational study included 1,091 adult patients admitted to medical wards of S. P. Medical College and associated group of hospitals in Bikaner, India from September 2003 through December 2005. The diagnosis of P. vivax malaria was established by peripheral blood film (PBF), rapid diagnostic test (RDT), and polymerase chain reaction (PCR), and severe malaria was categorized as per World Health Organization guidelines. Of 1,091 patients with malaria, 635 had P. falciparum malaria and 456 had P. vivax malaria. Among patients with severe manifestations, 40 had evidence of monoinfection of P. vivax malaria diagnosed by PBF, RDT, and PCR. Complications observed were hepatic dysfunction and jaundice in 23 (57.5%) patients, renal failure in 18 (45%) patients, severe anemia in 13 (32.5%) patients, cerebral malaria in 5 patients (12.5%), acute respiratory distress syndrome in 4 patients (10%), shock in 3 patients (7.5%), and hypoglycemia in 1 (2.5%) patient. Thrombocytopenia was observed in 5 (12.5%) patients, and multi-organ dysfunction was detected in 19 (47.5%) patients. Further large-scale multicentric epidemiologic studies are needed to define the basic pathology of this less known entity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host-parasite interactions revealed by Plasmodium falciparum metabolomics.

              Intracellular pathogens have devised mechanisms to exploit their host cells to ensure their survival and replication. The malaria parasite Plasmodium falciparum relies on an exchange of metabolites with the host for proliferation. Here we describe a mass spectrometry-based metabolomic analysis of the parasite throughout its 48 hr intraerythrocytic developmental cycle. Our results reveal a general modulation of metabolite levels by the parasite, with numerous metabolites varying in phase with the developmental cycle. Others differed from uninfected cells irrespective of the developmental stage. Among these was extracellular arginine, which was specifically converted to ornithine by the parasite. To identify the biochemical basis for this effect, we disrupted the plasmodium arginase gene in the rodent malaria model P. berghei. These parasites were viable but did not convert arginine to ornithine. Our results suggest that systemic arginine depletion by the parasite may be a factor in human malarial hypoargininemia associated with cerebral malaria pathogenesis.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malaria Journal
                BioMed Central
                1475-2875
                2011
                23 December 2011
                : 10
                : 384
                Affiliations
                [1 ]Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
                [2 ]Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
                [3 ]The Division of Biological Sciences, University of Chicago, 5812, S. Ellis Avenue, Chicago, IL 60637, USA
                Article
                1475-2875-10-384
                10.1186/1475-2875-10-384
                3298531
                22196439
                0bfa8964-c967-4089-8f95-5302b6785fcf
                Copyright ©2011 Sengupta et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 October 2011
                : 23 December 2011
                Categories
                Research

                Infectious disease & Microbiology
                plasmodium vivax,metabolites,nmr,biomarker,metabonomics
                Infectious disease & Microbiology
                plasmodium vivax, metabolites, nmr, biomarker, metabonomics

                Comments

                Comment on this article