27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Activation of the P2X₇ receptor induces migration of glial cells by inducing cathepsin B degradation of tissue inhibitor of metalloproteinase 1.

      1 ,
      Journal of neurochemistry
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The P2X(7) receptor is an ion-gated channel, which is activated by high extracellular concentrations of adenosine triphosphate (ATP). Activation of P2X(7) receptors has been shown to induce neuroinflammatory changes associated with several neurological conditions. The matrix metalloproteinases (MMPs) are a family of endopeptidases that have several functions including degradation of the extracellular matrix, cell migration and modulation of bioactive molecules. The actions of MMPs are prevented by a family of protease inhibitors called tissue inhibitors of metalloproteinases (TIMPs). In this study, we show that ATP-treated glial cultures from neonatal C57BL/6 mice release and increase MMP-9 activity, which is coupled with a decrease in release of TIMP-1 and an increase in activated cathepsin B within the extracellular space. This process occurs independently of NLRP3-inflammasome formation. Treatment with a P2X(7) receptor antagonist prevents ATP-induced MMP-9 activity, inhibition of active cathepsin B release and allows for TIMP-1 to be released from the cell. We have shown that cathepsin B degrades TIMP-1, and inhibition of cathepsin B allows for release of TIMP-1 and inhibits MMP-9 activity. We also present data that indicate that ATP or cell damage induces glial cell migration, which is inhibited by P2X(7) antagonism, depletion of MMP-9 or inhibition of cathepsin B.

          Related collections

          Author and article information

          Journal
          J. Neurochem.
          Journal of neurochemistry
          Wiley-Blackwell
          1471-4159
          0022-3042
          Dec 2012
          : 123
          : 5
          Affiliations
          [1 ] Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland. niamh.murphy@tcd.ie
          Article
          10.1111/jnc.12031
          23017058
          0c07724e-a337-4ec7-8395-00a8e4a8c404
          History

          Comments

          Comment on this article