10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure-inhibition relationship of podophyllotoxin (PT) analogues towards UDP-glucuronosyltransferase (UGT) isoforms.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          UDP-glucuronosyltransferases (UGTs) are involved in the clearance of many important drugs and endogenous substances, and inhibition of UGTs' activity by herbal components might induce severe herb-drug interactions or metabolic disturbances of endogenous substances. The present study aims to determine the inhibition of UGTs' activity by podophyllotoxin derivatives, trying to indicate the potential herb-drug interaction or metabolic influence towards endogenous substances' metabolism. Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the podophyllotoxin derivatives' inhibition potential. Structure-dependent inhibition behavior of podophyllotoxin derivatives towards UGT isoforms was detected. Inhibition kinetic type and parameter (Ki) were determined for the inhi- bition of podophyllotoxin towards UGT1A1, and competitive inhibition of podophyllotoxin towards UGT1A1 was observed with the inhibition kinetic parameter (Ki) to be 4.0 μM. Furthermore, podophyllotoxin was demonstrated to exert medium and weak inhibition potential towards human liver microsomes (HLMs)-catalyzed SN-38 glucuronidation and estradiol-3-glucuronidation. In conclusion, podophyllotoxin inhibited UGT1A1 activity, indicating potential herb-drug interactions between podophyllotoxin-containing herbs and drugs mainly undergoing UGT1A1-mediated metabolism.

          Related collections

          Author and article information

          Journal
          Pharmazie
          Die Pharmazie
          0031-7144
          0031-7144
          Apr 2015
          : 70
          : 4
          Article
          26012253
          0c17769b-6ee2-4fce-b1a8-39f82fcd3cd9
          History

          Comments

          Comment on this article