4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Phenolic profiling and in vitro bioactivity of Moringa oleifera leaves as affected by different extraction solvents

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Flavonoids: an overview

          Flavonoids, a group of natural substances with variable phenolic structures, are found in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. These natural products are well known for their beneficial effects on health and efforts are being made to isolate the ingredients so called flavonoids. Flavonoids are now considered as an indispensable component in a variety of nutraceutical, pharmaceutical, medicinal and cosmetic applications. This is attributed to their anti-oxidative, anti-inflammatory, anti-mutagenic and anti-carcinogenic properties coupled with their capacity to modulate key cellular enzyme function. Research on flavonoids received an added impulse with the discovery of the low cardiovascular mortality rate and also prevention of CHD. Information on the working mechanisms of flavonoids is still not understood properly. However, it has widely been known for centuries that derivatives of plant origin possess a broad spectrum of biological activity. Current trends of research and development activities on flavonoids relate to isolation, identification, characterisation and functions of flavonoids and finally their applications on health benefits. Molecular docking and knowledge of bioinformatics are also being used to predict potential applications and manufacturing by industry. In the present review, attempts have been made to discuss the current trends of research and development on flavonoids, working mechanisms of flavonoids, flavonoid functions and applications, prediction of flavonoids as potential drugs in preventing chronic diseases and future research directions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits

            ABSTRACT Anthocyanins are colored water-soluble pigments belonging to the phenolic group. The pigments are in glycosylated forms. Anthocyanins responsible for the colors, red, purple, and blue, are in fruits and vegetables. Berries, currants, grapes, and some tropical fruits have high anthocyanins content. Red to purplish blue-colored leafy vegetables, grains, roots, and tubers are the edible vegetables that contain a high level of anthocyanins. Among the anthocyanin pigments, cyanidin-3-glucoside is the major anthocyanin found in most of the plants. The colored anthocyanin pigments have been traditionally used as a natural food colorant. The color and stability of these pigments are influenced by pH, light, temperature, and structure. In acidic condition, anthocyanins appear as red but turn blue when the pH increases. Chromatography has been largely applied in extraction, separation, and quantification of anthocyanins. Besides the use of anthocyanidins and anthocyanins as natural dyes, these colored pigments are potential pharmaceutical ingredients that give various beneficial health effects. Scientific studies, such as cell culture studies, animal models, and human clinical trials, show that anthocyanidins and anthocyanins possess antioxidative and antimicrobial activities, improve visual and neurological health, and protect against various non-communicable diseases. These studies confer the health effects of anthocyanidins and anthocyanins, which are due to their potent antioxidant properties. Different mechanisms and pathways are involved in the protective effects, including free-radical scavenging pathway, cyclooxygenase pathway, mitogen-activated protein kinase pathway, and inflammatory cytokines signaling. Therefore, this review focuses on the role of anthocyanidins and anthocyanins as natural food colorants and their nutraceutical properties for health. Abbreviations: CVD: Cardiovascular disease VEGF: Vascular endothelial growth factor
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A comprehensive review on tyrosinase inhibitors

              Abstract Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Food Research International
                Food Research International
                Elsevier BV
                09639969
                January 2020
                January 2020
                : 127
                : 108712
                Article
                10.1016/j.foodres.2019.108712
                31882101
                0c404448-03a8-4b57-989e-fbb12b4e354b
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article