98
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer disease (AD) is characterized by functional impairment in the neural elements and circuits underlying cognitive and memory functions. We hypothesized that fornix/hypothalamus deep brain stimulation (DBS) could modulate neurophysiological activity in these pathological circuits and possibly produce clinical benefits. We conducted a phase I trial in 6 patients with mild AD receiving ongoing medication treatment. Patients received continuous stimulation for 12 months. Three main lines of investigation were pursued including: (1) mapping the brain areas whose physiological function was modulated by stimulation using standardized low-resolution electromagnetic tomography, (2) assessing whether DBS could correct the regional alterations in cerebral glucose metabolism in AD using positron emission tomography (PET), and 3) measuring the effects of DBS on cognitive function over time using clinical scales and instruments. DBS drove neural activity in the memory circuit, including the entorhinal, and hippocampal areas and activated the brain's default mode network. PET scans showed an early and striking reversal of the impaired glucose utilization in the temporal and parietal lobes that was maintained after 12 months of continuous stimulation. Evaluation of the Alzheimer's Disease Assessment Scale cognitive subscale and the Mini Mental State Examination suggested possible improvements and/or slowing in the rate of cognitive decline at 6 and 12 months in some patients. There were no serious adverse events. There is an urgent need for novel therapeutic approaches for AD. Modulating pathological brain activity in this illness with DBS merits further investigation.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Alzheimer disease in the US population: prevalence estimates using the 2000 census.

          Current and future estimates of Alzheimer disease (AD) are essential for public health planning. To provide prevalence estimates of AD for the US population from 2000 through 2050. Alzheimer disease incidence estimates from a population-based, biracial, urban study, using a stratified random sampling design, were converted to prevalence estimates and applied to US Census Bureau estimates of US population growth. A geographically defined community of 3 adjacent neighborhoods in Chicago, Ill, applied to the US population. Alzheimer disease incidence was measured in 3838 persons free of AD at baseline; 835 persons were evaluated for disease incidence. Main Outcome Measure Current and future estimates of prevalence of clinically diagnosed AD in the US population. In 2000, there were 4.5 million persons with AD in the US population. By 2050, this number will increase by almost 3-fold, to 13.2 million. Owing to the rapid growth of the oldest age groups of the US population, the number who are 85 years and older will more than quadruple to 8.0 million. The number who are 75 to 84 years old will double to 4.8 million, while the number who are 65 to 74 years old will remain fairly constant at 0.3 to 0.5 million. The number of persons with AD in the US population will continue to increase unless new discoveries facilitate prevention of the disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease.

            Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimer's disease. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimer's disease, with extension of therapeutic benefits into the degenerating hippocampus. In amyloid-transgenic mice, BDNF gene delivery, when administered after disease onset, reverses synapse loss, partially normalizes aberrant gene expression, improves cell signaling and restores learning and memory. These outcomes occur independently of effects on amyloid plaque load. In aged rats, BDNF infusion reverses cognitive decline, improves age-related perturbations in gene expression and restores cell signaling. In adult rats and primates, BDNF prevents lesion-induced death of entorhinal cortical neurons. In aged primates, BDNF reverses neuronal atrophy and ameliorates age-related cognitive impairment. Collectively, these findings indicate that BDNF exerts substantial protective effects on crucial neuronal circuitry involved in Alzheimer's disease, acting through amyloid-independent mechanisms. BDNF therapeutic delivery merits exploration as a potential therapy for Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Which elements are excited in electrical stimulation of mammalian central nervous system: a review.

              J Ranck (1975)
              (1) There are data on the amount of current necessary to stimulate a myelinated fiber or cell body and/or its axon a given distance away from a monopolar electrode over the entire range of practical interest for intracranial stimulation. Data do not exist for other electrode configurations. (2) Currents from a monopolar cathode of more than 8 times threshold may block action potentials in axons. Therefore, only axons lying in a shell around the electrode are stimulated. Elements very close to the electrode may not be stimulated. Close to an electrode small diameter axons may be stimulated and larger ones may not be. (3) Most, and perhaps all, CNS myelinated fibers have chronaxies of 50-100 musec. When gray matter is stimulated, the chronaxie is often 200-700 musec. It is not clear what is being stimulated in this case. Current-duration relations should be determined for many more responses. (4) There are no current-distance or current-duration data for central finely myelinated or unmyelinated fibers. (5) It takes less cathodal current than anodal to stimulate a myelinated fiber passing by a monopolar electrode. When a monopolar electrode is near a cell body, on the opposite side from the axon, often the lowest threshold is anodal, but sometimes cathodal. Stimulation of a neuron near its cell body is not well understood, but in many cases the axon is probably stimulated. (6) Orientation of cell body and axons with respect to current flow is important. For an axon it is the component of the voltage gradient parallel to the fiber that is important. (7) The pia has a significant resistance and capacitance. Gray matter, white matter, and cerebrospinal fluid have different resistivities, which affect patterns of current flow. (8) More is known about stimulation of mammalian CNS than most workers are aware of. Much of what is unknown seems solvable with current methods.
                Bookmark

                Author and article information

                Journal
                Annals of Neurology
                Ann Neurol.
                Wiley
                03645134
                October 2010
                October 2010
                August 04 2010
                : 68
                : 4
                : 521-534
                Article
                10.1002/ana.22089
                20687206
                0c4abebe-68cb-4f08-a33d-097a4748f5ab
                © 2010

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article