19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Perioperative red blood cell transfusion in orofacial surgery

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the field of orofacial surgery, a red blood cell transfusion (RBCT) is occasionally required during double jaw and oral cancer surgery. However, the question remains whether the effect of RBCT during the perioperative period is beneficial or harmful. The answer to this question remains challenging. In the field of orofacial surgery, transfusion is performed for the purpose of oxygen transfer to hypoxic tissues and plasma volume expansion when there is bleeding. However, there are various risks, such as infectious complications (viral and bacterial), transfusion-related acute lung injury, ABO and non-ABO associated hemolytic transfusion reactions, febrile non-hemolytic transfusion reactions, transfusion associated graft-versus-host disease, transfusion associated circulatory overload, and hypersensitivity transfusion reaction including anaphylaxis and transfusion-related immune-modulation. Many studies and guidelines have suggested RBCT is considered when hemoglobin levels recorded are 7 g/dL for general patients and 8-9 g/dL for patients with cardiovascular disease or hemodynamically unstable patients. However, RBCT is occasionally an essential treatment during surgeries and it is often required in emergency cases. We need to comprehensively consider postoperative bleeding, different clinical situations, the level of intra- and postoperative patient monitoring, and various problems that may arise from a transfusion, in the perspective of patient safety. Since orofacial surgery has an especially high risk of bleeding due to the complex structures involved and the extensive vascular distribution, measures to prevent bleeding should be taken and the conditions for a transfusion should be optimized and appropriate in order to promote patient safety.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          Transfusion strategies for acute upper gastrointestinal bleeding.

          The hemoglobin threshold for transfusion of red cells in patients with acute gastrointestinal bleeding is controversial. We compared the efficacy and safety of a restrictive transfusion strategy with those of a liberal transfusion strategy. We enrolled 921 patients with severe acute upper gastrointestinal bleeding and randomly assigned 461 of them to a restrictive strategy (transfusion when the hemoglobin level fell below 7 g per deciliter) and 460 to a liberal strategy (transfusion when the hemoglobin fell below 9 g per deciliter). Randomization was stratified according to the presence or absence of liver cirrhosis. A total of 225 patients assigned to the restrictive strategy (51%), as compared with 61 assigned to the liberal strategy (14%), did not receive transfusions (P<0.001) [corrected].The probability of survival at 6 weeks was higher in the restrictive-strategy group than in the liberal-strategy group (95% vs. 91%; hazard ratio for death with restrictive strategy, 0.55; 95% confidence interval [CI], 0.33 to 0.92; P=0.02). Further bleeding occurred in 10% of the patients in the restrictive-strategy group as compared with 16% of the patients in the liberal-strategy group (P=0.01), and adverse events occurred in 40% as compared with 48% (P=0.02). The probability of survival was slightly higher with the restrictive strategy than with the liberal strategy in the subgroup of patients who had bleeding associated with a peptic ulcer (hazard ratio, 0.70; 95% CI, 0.26 to 1.25) and was significantly higher in the subgroup of patients with cirrhosis and Child-Pugh class A or B disease (hazard ratio, 0.30; 95% CI, 0.11 to 0.85), but not in those with cirrhosis and Child-Pugh class C disease (hazard ratio, 1.04; 95% CI, 0.45 to 2.37). Within the first 5 days, the portal-pressure gradient increased significantly in patients assigned to the liberal strategy (P=0.03) but not in those assigned to the restrictive strategy. As compared with a liberal transfusion strategy, a restrictive strategy significantly improved outcomes in patients with acute upper gastrointestinal bleeding. (Funded by Fundació Investigació Sant Pau; ClinicalTrials.gov number, NCT00414713.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD4+CD25high regulatory cells in human peripheral blood.

            Thymectomy in mice on neonatal day 3 leads to the development of multiorgan autoimmune disease due to loss of a CD(+)CD25(+) T cell regulatory population in their peripheral lymphoid tissues. Here, we report the identification of a CD4(+) population of regulatory T cells in the circulation of humans expressing high levels of CD25 that exhibit in vitro characteristics identical with those of the CD4(+)CD25(+) regulatory cells isolated in mice. With TCR cross-linking, CD4(+)CD25(high) cells did not proliferate but instead totally inhibited proliferation and cytokine secretion by activated CD4(+)CD25(-) responder T cells in a contact-dependent manner. The CD4(+)CD25(high) regulatory T cells expressed high levels of CD45RO but not CD45RA, akin to the expression of CD45RB(low) on murine CD4(+)CD25(+) regulatory cells. Increasing the strength of signal by providing either costimulation with CD28 cross-linking or the addition of IL-2 to a maximal anti-CD3 stimulus resulted in a modest induction of proliferation and the loss of observable suppression in cocultures of CD4(+)CD25(high) regulatory cells and CD4(+)CD25(-) responder cells. Whereas higher ratios of CD4(+)CD25(high) T cells are required to suppress proliferation if the PD-L1 receptor is blocked, regulatory cell function is shown to persist in the absence of the PD-1/PD-L1 or CTLA-4/B7 pathway. Thus, regulatory CD4 T cells expressing high levels of the IL-2 receptor are present in humans, providing the opportunity to determine whether alterations of these populations of T cells are involved in the induction of human autoimmune disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The CRIT Study: Anemia and blood transfusion in the critically ill--current clinical practice in the United States.

              To quantify the incidence of anemia and red blood cell (RBC) transfusion practice in critically ill patients and to examine the relationship of anemia and RBC transfusion to clinical outcomes. Prospective, multiple center, observational cohort study of intensive care unit (ICU) patients in the United States. Enrollment period was from August 2000 to April 2001. Patients were enrolled within 48 hrs of ICU admission. Patient follow-up was for 30 days, hospital discharge, or death, whichever occurred first. A total of 284 ICUs (medical, surgical, or medical-surgical) in 213 hospitals participated in the study. A total of 4,892 patients were enrolled in the study. The mean hemoglobin level at baseline was 11.0 +/- 2.4 g/dL. Hemoglobin level decreased throughout the duration of the study. Overall, 44% of patients received one or more RBC units while in the ICU (mean, 4.6 +/- 4.9 units). The mean pretransfusion hemoglobin was 8.6 +/- 1.7 g/dL. The mean time to first ICU transfusion was 2.3 +/- 3.7 days. More RBC transfusions were given in study week 1; however, in subsequent weeks, subjects received one to two RBC units per week while in the ICU. The number of RBC transfusions a patient received during the study was independently associated with longer ICU and hospital lengths of stay and an increase in mortality. Patients who received transfusions also had more total complications and were more likely to experience a complication. Baseline hemoglobin was related to the number of RBC transfusions, but it was not an independent predictor of length of stay or mortality. However, a nadir hemoglobin level of <9 g/dL was a predictor of increased mortality and length of stay. Anemia is common in the critically ill and results in a large number of RBC transfusions. Transfusion practice has changed little during the past decade. The number of RBC units transfused is an independent predictor of worse clinical outcome.
                Bookmark

                Author and article information

                Journal
                J Dent Anesth Pain Med
                J Dent Anesth Pain Med
                JDAPM
                Journal of Dental Anesthesia and Pain Medicine
                The Korean Dental Society of Anesthsiology
                2383-9309
                2383-9317
                September 2017
                25 September 2017
                : 17
                : 3
                : 163-181
                Affiliations
                [1 ]Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
                [2 ]Department of Dental Anesthesiology, Seoul National University Dental Hospital, Seoul, Republic of Korea.
                Author notes
                Corresponding Author: Myong-Hwan Karm, Department of Dental Anesthesiology, Seoul National University Dental Hospital, Daehak-ro 101, Jongno-gu, Seoul 03080, Republic of Korea. Tel: +82-2-2072-3847, Fax: +82-2-766-9427, karmmh81@ 123456gmail.com
                Author information
                https://orcid.org/0000-0002-5224-3077
                https://orcid.org/0000-0001-5906-0639
                https://orcid.org/0000-0002-7494-4747
                Article
                10.17245/jdapm.2017.17.3.163
                5647818
                0cad6b6e-08b9-493b-8e88-fd31adbd3786
                Copyright © 2017 Journal of Dental Anesthesia and Pain Medicine

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 August 2017
                : 24 August 2017
                : 03 September 2017
                Categories
                Review Article

                orofacial surgery,red blood cell,transfusion
                orofacial surgery, red blood cell, transfusion

                Comments

                Comment on this article