15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Integrins are a large family of adhesion molecules that mediate cell-cell and cell-extracellular matrix interactions. Among the 24 integrin isoforms, many have been found to be associated with tumor angiogenesis, tumor cell migration and proliferation, and metastasis. Integrins, especially αvβ3, αvβ5 and α5β1, participate in mediating tumor angiogenesis by interacting with the vascular endothelial growth factor and angiopoietin-Tie signaling pathways. Melanoma patients have a poor prognosis when the primary tumor has generated distant metastases, and the melanoma metastatic site is an independent predictor of the survival of these patients. Different integrins on the melanoma cell surface preferentially direct circulating melanoma cells to different organs and promote the development of metastases at specific organ sites. For instance, melanoma cells expressing integrin β3 tend to metastasize to the lungs, whereas those expressing integrin β1 preferentially generate lymph node metastases. Moreover, tumor cell-derived exosomes which contain different integrins may prepare a pre-metastatic niche in specific organs and promote organ-specific metastases. Because of the important role that integrins play in tumor angiogenesis and metastasis, they have become promising targets for the treatment of advanced cancer. In this paper, we review the integrin isoforms responsible for angiogenesis and organ-specific metastasis in malignant melanoma and the inhibitors that have been considered for the future treatment of metastatic disease.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Biogenesis and secretion of exosomes.

          Although observed for several decades, the release of membrane-enclosed vesicles by cells into their surrounding environment has been the subject of increasing interest in the past few years, which led to the creation, in 2012, of a scientific society dedicated to the subject: the International Society for Extracellular Vesicles. Convincing evidence that vesicles allow exchange of complex information fuelled this rise in interest. But it has also become clear that different types of secreted vesicles co-exist, with different intracellular origins and modes of formation, and thus probably different compositions and functions. Exosomes are one sub-type of secreted vesicles. They form inside eukaryotic cells in multivesicular compartments, and are secreted when these compartments fuse with the plasma membrane. Interestingly, different families of molecules have been shown to allow intracellular formation of exosomes and their subsequent secretion, which suggests that even among exosomes different sub-types exist. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The distribution of secondary growths in cancer of the breast. 1889.

            S. PAGET (1989)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Angiogenesis: an organizing principle for drug discovery?

              Angiogenesis--the process of new blood-vessel growth--has an essential role in development, reproduction and repair. However, pathological angiogenesis occurs not only in tumour formation, but also in a range of non-neoplastic diseases that could be classed together as 'angiogenesis-dependent diseases'. By viewing the process of angiogenesis as an 'organizing principle' in biology, intriguing insights into the molecular mechanisms of seemingly unrelated phenomena might be gained. This has important consequences for the clinical use of angiogenesis inhibitors and for drug discovery, not only for optimizing the treatment of cancer, but possibly also for developing therapeutic approaches for various diseases that are otherwise unrelated to each other.
                Bookmark

                Author and article information

                Contributors
                47-2278-1231 , ruixia.huang@rr-research.no
                Journal
                J Exp Clin Cancer Res
                J. Exp. Clin. Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                27 April 2018
                27 April 2018
                2018
                : 37
                : 92
                Affiliations
                ISNI 0000 0004 0389 8485, GRID grid.55325.34, Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, , Oslo University Hospital, ; Ullernchausseen 70, 0379 Oslo, Norway
                Author information
                http://orcid.org/0000-0001-7214-647X
                Article
                763
                10.1186/s13046-018-0763-x
                5924434
                29703238
                0cd4c882-a778-4d3a-8c5a-9377280d5b95
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 23 March 2018
                : 16 April 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100008730, Kreftforeningen;
                Funded by: FundRef http://dx.doi.org/10.13039/501100006095, Helse Sør-Øst RHF;
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Oncology & Radiotherapy
                integrin,organ-specific metastasis,malignant melanoma,angiogenesis,metastasis,integrin inhibitors,therapeutic target,targeted therapies

                Comments

                Comment on this article