239
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current approaches toward production of secondary plant metabolites

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants are the tremendous source for the discovery of new products with medicinal importance in drug development. Today several distinct chemicals derived from plants are important drugs, which are currently used in one or more countries in the world. Secondary metabolites are economically important as drugs, flavor and fragrances, dye and pigments, pesticides, and food additives. Many of the drugs sold today are simple synthetic modifications or copies of the naturally obtained substances. The evolving commercial importance of secondary metabolites has in recent years resulted in a great interest in secondary metabolism, particularly in the possibility of altering the production of bioactive plant metabolites by means of tissue culture technology. Plant cell and tissue culture technologies can be established routinely under sterile conditions from explants, such as plant leaves, stems, roots, and meristems for both the ways for multiplication and extraction of secondary metabolites. In vitro production of secondary metabolite in plant cell suspension cultures has been reported from various medicinal plants, and bioreactors are the key step for their commercial production. Based on this lime light, the present review is aimed to cover phytotherapeutic application and recent advancement for the production of some important plant pharmaceuticals.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: not found

          Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

          Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant cell cultures: Chemical factories of secondary metabolites.

            This review deals with the production of high-value secondary metabolites including pharmaceuticals and food additives through plant cell cultures, shoot cultures, root cultures and transgenic roots obtained through biotechnological means. Plant cell and transgenic hairy root cultures are promising potential alternative sources for the production of high-value secondary metabolites of industrial importance. Recent developments in transgenic research have opened up the possibility of the metabolic engineering of biosynthetic pathways to produce high-value secondary metabolites. The production of the pungent food additive capsaicin, the natural colour anthocyanin and the natural flavour vanillin is described in detail.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production.

              Metabolic engineering in microbes could be used to produce large amounts of valuable metabolites that are difficult to extract from their natural sources and too expensive or complex to produce by chemical synthesis. As a step towards the production of Taxol in the yeast Saccharomyces cerevisiae, we introduced heterologous genes encoding biosynthetic enzymes from the early part of the taxoid biosynthetic pathway, isoprenoid pathway, as well as a regulatory factor to inhibit competitive pathways, and studied their impact on taxadiene synthesis. Expression of Taxus chinensis taxadiene synthase alone did not increase taxadiene levels because of insufficient levels of the universal diterpenoid precursor geranylgeranyl diphosphate. Coexpression of T. chinensis taxadiene synthase and geranylgeranyl diphosphate synthase failed to increase levels, probably due to steroid-based negative feedback, so we also expressed a truncated version of 3-hydroxyl-3-methylglutaryl-CoA reductase (HMG-CoA reductase) isoenzyme 1 that is not subject to feedback inhibition and a mutant regulatory protein, UPC2-1, to allow steroid uptake under aerobic conditions, resulting in a 50% increase in taxadiene. Finally, we replaced the T. chinensis geranylgeranyl diphosphate synthase with its counterpart from Sulfolobus acidocaldarius, which does not compete with steroid synthesis, and codon optimized the T. chinensis taxadiene synthase gene to ensure high-level expression, resulting in a 40-fold increase in taxadiene to 8.7+/-0.85mg/l as well as significant amounts of geranylgeraniol (33.1+/-5.6mg/l), suggesting taxadiene levels could be increased even further. This is the first demonstration of such enhanced taxadiene levels in yeast and offers the prospect for Taxol production in recombinant microbes.
                Bookmark

                Author and article information

                Journal
                J Pharm Bioallied Sci
                JPBS
                Journal of Pharmacy & Bioallied Sciences
                Medknow Publications & Media Pvt Ltd (India )
                0976-4879
                0975-7406
                Jan-Mar 2012
                : 4
                : 1
                : 10-20
                Affiliations
                [1]Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
                [1 ]Department of Biotechnology, Integral, University, Lucknow, Uttar Pradesh, India
                Author notes
                Address for correspondence: Mr. Md. Sarfaraj Hussain, E-mail: sarfarajpharma@ 123456gmail.com
                Article
                JPBS-4-10
                10.4103/0975-7406.92725
                3283951
                22368394
                0df9cff2-79d9-4b5b-a5e0-c93d52f15801
                Copyright: © Journal of Pharmacy and Bioallied Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 May 2011
                : 23 June 2011
                : 31 July 2011
                Categories
                Review Article

                Pharmacology & Pharmaceutical medicine
                cell suspension culture,medicinal plants,secondary metabolites,plant pharmaceuticals

                Comments

                Comment on this article