81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome Sequencing Reveals Differences between Primary and Secondary Hair Follicle-derived Dermal Papilla Cells of the Cashmere Goat ( Capra hircus)

      research-article
      , , , * , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The dermal papilla is thought to establish the character and control the size of hair follicles. Inner Mongolia Cashmere goats ( Capra hircus) have a double coat comprising the primary and secondary hair follicles, which have dramatically different sizes and textures. The Cashmere goat is rapidly becoming a potent model for hair follicle morphogenesis research. In this study, we established two dermal papilla cell lines during the anagen phase of the hair growth cycle from the primary and secondary hair follicles and clarified the similarities and differences in their morphology and growth characteristics. High-throughput transcriptome sequencing was used to identify gene expression differences between the two dermal papilla cell lines. Many of the differentially expressed genes are involved in vascularization, ECM-receptor interaction and Wnt/β-catenin/Lef1 signaling pathways, which intimately associated with hair follicle morphogenesis. These findings provide valuable information for research on postnatal morphogenesis of hair follicles.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          WNT signals are required for the initiation of hair follicle development.

          Hair follicle morphogenesis is initiated by a dermal signal that induces the development of placodes in the overlying epithelium. To determine whether WNT signals are required for initiation of follicular development, we ectopically expressed Dickkopf 1, a potent diffusible inhibitor of WNT action, in the skin of transgenic mice. This produced a complete failure of placode formation prior to morphological or molecular signs of differentiation, and blocked tooth and mammary gland development before the bud stage. This phenotype indicates that activation of WNT signaling in the skin precedes, and is required for, localized expression of regulatory genes and initiation of hair follicle placode formation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The biology of hair follicles.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus).

              We report the ∼2.66-Gb genome sequence of a female Yunnan black goat. The sequence was obtained by combining short-read sequencing data and optical mapping data from a high-throughput whole-genome mapping instrument. The whole-genome mapping data facilitated the assembly of super-scaffolds >5× longer by the N50 metric than scaffolds augmented by fosmid end sequencing (scaffold N50 = 3.06 Mb, super-scaffold N50 = 16.3 Mb). Super-scaffolds are anchored on chromosomes based on conserved synteny with cattle, and the assembly is well supported by two radiation hybrid maps of chromosome 1. We annotate 22,175 protein-coding genes, most of which were recovered in the RNA-seq data of ten tissues. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat reveal 51 genes that are differentially expressed between the two types of hair follicles. This study, whose results will facilitate goat genomics, shows that whole-genome mapping technology can be used for the de novo assembly of large genomes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                19 September 2013
                : 8
                : 9
                : e76282
                Affiliations
                [1]The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
                Casey Eye Institute, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BZ TX XG DL. Performed the experiments: BZ TX. Analyzed the data: BZ TX. Contributed reagents/materials/analysis tools: BZ JY XG. Wrote the paper: BZ.

                Article
                PONE-D-13-23751
                10.1371/journal.pone.0076282
                3777969
                24069460
                0e8418fb-afdc-4b50-a1d9-398f5a180486
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 June 2013
                : 22 August 2013
                Page count
                Pages: 13
                Funding
                The Program of National Natural Science Foundation of China (Grant No. 31160228); The National High Technology Research and Development Program of China (863 Program)(Grant No. 2013AA102506); The National Genetically Modified Organisms Breeding Major Projects (Grant No. 2011ZX08008-002). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article