25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Characterization and Expression Pattern of Gene IGFBP-5 in the Cashmere Goat ( Capra hircus)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insulin-like growth factor-binding protein-5 (IGFBP-5) is one of the six members of IGFBP family, important for cell growth, apoptosis and other IGF-stimulated signaling pathways. In order to explore the significance of IGFBP-5 in cells of the Inner Mongolian Cashmere goat ( Capra hircus), IGFBP-5 gene complementary DNA (cDNA) was amplified by reverse transcription polymerase chain reaction (RT-PCR) from the animal’s fetal fibroblasts and tissue-specific expression analysis was performed by semi-quantitative RT-PCR. The gene is 816 base pairs (bp) in length and includes the complete open reading frame, encoding 271 amino acids (GenBank accession number JF720883). The full cDNA nucleotide sequence has a 99% identity with sheep, 98% with cattle and 95% with human. The amino acids sequence shares identity with 99%, 99% and 99%, respectively. The bioinformatics analysis showed that IGFBP-5 has an insulin growth factor-binding protein homologues (IB) domain and a thyroglobulin type-1 (TY) domain, four protein kinase C phosphorylation sites, five casein kinase II phosphorylation sites, three prenyl group binding sites (CaaX box). The IGFBP-5 gene was expressed in all the tested tissues including testis, brain, liver, lung, mammary gland, spleen, and kidney, suggesting that IGFBP-5 plays an important role in goat cells.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics.

          The IGFBPs are a family of homologous proteins that have co-evolved with the IGFs and that confer upon the IGF regulatory system both functional and tissue specificity. IGFBPs are not merely carrier proteins for IGFs, but hold a central position in IGF ligand-receptor interactions through influences on both the bioavailability and distribution of IGFs in the extracellular environment. In addition, IGFBPs appear to have intrinsic biological activity independent of IGFs. The current status of research on IGFBPs is reviewed herein. Following a brief introduction to the entire IGF/IGFBP system, separate sections for each of the six cloned mammalian IGFBPs, the most extensive for IGFBP3, cover selected topics that emphasize the dynamics of IGFBPs--that is, their regulation in cells, their functionally important post-translational modifications, and their interactions in the cellular microenvironment--and how these dynamics influence physiological function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis.

            The six members of the insulin-like growth factor-binding protein family (IGFBP-1-6) are important components of the IGF (insulin-like growth factor) axis. In this capacity, they serve to regulate the activity of both IGF-I and -II polypeptide growth factors. The IGFBPs are able to enhance or inhibit the activity of IGFs in a cell- and tissue-specific manner. One of these proteins, IGFBP-5, also has an important role in controlling cell survival, differentiation and apoptosis. In this review, we report on the structural and functional features of the protein which are important for these effects. We also examine the regulation of IGFBP-5 expression and comment on its potential role in tumour biology, with special reference to work with breast cancer cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Igf-I signalling controls the hair growth cycle and the differentiation of hair shafts.

              Mesenchymal-epithelial signalling between the dermal papilla and the hair matrix regulates cell proliferation and differentiation in mature hair follicles. The molecular basis of these interactions is largely unexplored. According to its expression in the dermal papilla, IGF-I is likely involved in reciprocal signalling. To examine its biological function in pelage follicles further, we generated transgenic mice that express Igf-I in the inner root sheath and the medulla using an involucrin promoter fragment. We demonstrate that Igf-I affects follicular proliferation, tissue remodelling, and the hair growth cycle, as well as folliclular differentiation. Transgenic skin temporarily lacks visible adipose tissue in telogen. The onset of the second, aberrant growth phase is markedly retarded. Transgenic guard hairs are significantly elongated and a small fraction of hair follicles is severely disoriented. The microscopic appearance of most hair shafts is altered and, strikingly, Igf-I transgenic mice lack hairs with a zigzag shape due to the suppression of hair shaft bending. All transgenic effects are partially compensated by ectopic expression of Igfbp3. Finally, Pdgfralpha was identified as the first molecular target that is affected in Igf-I transgenic mice. In summary, our data identify IGF-I signalling as an important mitogenic and morphogenetic regulator in hair follicle biology.
                Bookmark

                Author and article information

                Journal
                Asian-Australas J Anim Sci
                Asian-australas. J. Anim. Sci
                Asian-Australasian Journal of Animal Sciences
                Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST)
                1011-2367
                1976-5517
                May 2012
                01 May 2012
                : 25
                : 5
                : 606-612
                Affiliations
                [1 ]College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021, China
                [2 ]School of life Sciences and Technology, Tongji University, Siping Road, Yangpu District, Shanghai 200092, China.
                Author notes
                [* ]Corresponding Author: Z. G. Wang. Tel: +86-471-4995867-8008, Fax: +86-471-4992435, E-mail: lswzg@ 123456imu.edu.cn
                [a]

                These authors contributed equally to this work.

                Article
                ajas-25-5-606-2
                10.5713/ajas.2011.11290
                4093108
                572ad707-fe39-4a76-91f5-6858abdae1a3
                Copyright © 2012 by Asian-Australasian Journal of Animal Sciences

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/ which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 August 2011
                : 01 December 2011
                : 25 October 2011
                Categories
                Article

                cashmere goat,igfbp-5,expression pattern,tissue-specific,hair,gene

                Comments

                Comment on this article