6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Baby food and bedtime: Evidence for opposite phenotypes from different genetic and epigenetic alterations in Prader-Willi and Angelman syndromes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prader–Willi and Angelman syndromes are often referred to as a sister pair of neurodevelopmental disorders, resulting from different genetic and epigenetic alterations to the same chromosomal region, 15q11-q13. Some of the primary phenotypes of the two syndromes have been suggested to be opposite to one another, but this hypothesis has yet to be tested comprehensively, and it remains unclear how opposite effects could be produced by changes to different genes in one syndrome compared to the other. We evaluated the evidence for opposite effects on sleep and eating phenotypes in Prader–Willi syndrome and Angelman syndrome, and developed physiological–genetic models that represent hypothesized causes of these differences. Sleep latency shows opposite deviations from controls in Prader–Willi and Angelman syndromes, with shorter latency in Prader–Willi syndrome by meta-analysis and longer latency in Angelman syndrome from previous studies. These differences can be accounted for by the effects of variable gene dosages of UBE3A and MAGEL2, interacting with clock genes, and leading to acceleration (in Prader–Willi syndrome) or deceleration (in Angelman syndrome) of circadian rhythms. Prader–Willi and Angelman syndromes also show evidence of opposite alterations in hyperphagic food selectivity, with more paternally biased subtypes of Angelman syndrome apparently involving increased preference for complementary foods (“baby foods”); hedonic reward from eating may also be increased in Angelman syndrome and decreased in Prader–Willi syndrome. These differences can be explained in part under a model whereby hyperphagia and food selectivity are mediated by the effects of the genes SNORD-116, UBE3A and MAGEL2, with outcomes depending upon the genotypic cause of Angelman syndrome. The diametric variation observed in sleep and eating phenotypes in Prader–Willi and Angelman syndromes is consistent with predictions from the kinship theory of imprinting, reflecting extremes of higher resource demand in Angelman syndrome and lower demand in Prader–Willi syndrome, with a special emphasis on social–attentional demands and attachment associated with bedtime, and feeding demands associated with mother-provided complementary foods compared to offspring-foraged family-type foods.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular analysis of mammalian circadian rhythms.

          In mammals, a master circadian "clock" resides in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN clock is composed of multiple, single-cell circadian oscillators, which, when synchronized, generate coordinated circadian outputs that regulate overt rhythms. Eight clock genes have been cloned that are involved in interacting transcriptional-/translational-feedback loops that compose the molecular clockwork. The daily light-dark cycle ultimately impinges on the control of two clock genes that reset the core clock mechanism in the SCN. Clock-controlled genes are also generated by the central clock mechanism, but their protein products transduce downstream effects. Peripheral oscillators are controlled by the SCN and provide local control of overt rhythm expression. Greater understanding of the cellular and molecular mechanisms of the SCN clockwork provides opportunities for pharmacological manipulation of circadian timing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            UBE3A/E6-AP mutations cause Angelman syndrome.

            Angelman syndrome (AS), characterized by mental retardation, seizures, frequent smiling and laughter, and abnormal gait, is one of the best examples of human disease in which genetic imprinting plays a role. In about 70% of cases, AS is caused by de novo maternal deletions at 15q11-q13 (ref. 2). Approximately 2% of AS cases are caused by paternal uniparental disomy (UPD) of chromosome 15 (ref. 3) and 2-3% are caused by "imprinting mutations'. In the remaining 25% of AS cases, no deletion, uniparental disomy (UPD), or methylation abnormality is detectable, and these cases, unlike deletions or UPD, can be familial. These cases are likely to result from mutations in a gene that is expressed either exclusively or preferentially from the maternal chromosome 15. We have found that a 15q inversion inherited by an AS child from her normal mother disrupts the 5' end of the UBE3A (E6-AP) gene, the product of which functions in protein ubiquitination. We have looked for novel UBE3A mutations in nondeletion/non-UPD/non-imprinting mutation (NDUI) AS patients and have found one patient who is heterozygous for a 5-bp de novo tandem duplication. We have also found in two brothers a heterozygous mutation, an A to G transition that creates a new 3' splice junction 7 bp upstream from the normal splice junction. Both mutations are predicted to cause a frameshift and premature termination of translation. Our results demonstrate that UBE3A mutations are one cause of AS and indicate a possible abnormality in ubiquitin-mediated protein degradation during brain development in this disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Matrix product ansatz for Fermi fields in one dimension

                Bookmark

                Author and article information

                Journal
                SAGE Open Med
                SAGE Open Med
                SMO
                spsmo
                SAGE Open Medicine
                SAGE Publications (Sage UK: London, England )
                2050-3121
                28 January 2019
                2019
                : 7
                : 2050312118823585
                Affiliations
                [1-2050312118823585]Simon Fraser University, Burnaby, BC, Canada
                Author notes
                [*]Iiro Ilmari Salminen, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada. Email: isalmine@ 123456sfu.ca
                Author information
                https://orcid.org/0000-0003-0411-3160
                Article
                10.1177_2050312118823585
                10.1177/2050312118823585
                6350130
                0f0968b3-3aad-421e-a56d-d2014117e1d8
                © The Author(s) 2019

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 13 September 2018
                : 14 December 2018
                Funding
                Funded by: canadian network for research and innovation in machining technology, natural sciences and engineering research council of canada, FundRef https://doi.org/10.13039/501100002790;
                Award ID: 2014-06505
                Categories
                Review Paper
                Custom metadata
                January-December 2019

                angelman syndrome,prader–willi syndrome,evolutionary medicine,genomic imprinting,hyperphagia,sleep

                Comments

                Comment on this article