2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Structural Diversity in Local Goats: Analysis of Copy-Number Variations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Copy-number variations (CNVs) are one of the widely dispersed forms of structural variations in mammalian genomes and are known to be present in genomic regions that regulate important physiological functions. In this study, CNV detection was performed starting from genotypic data of 120 individuals, belonging to four Sicilian dairy goat breeds, genotyped with the Illumina GoatSNP50 BeadChip array. Using PennCNV software, a total of 702 CNVs were identified in 107 individuals. These were merged in 75 CNV regions (CNVRs), i.e., regions containing CNVs overlapped by at least 1 base pair. Functional annotation of the CNVRs allowed the identification of 139 genes/loci within the most frequent CNVRs, which are involved in local adaptation, mild behaviour, immune response, reproduction, and olfactory receptors. This study provides insights into the genomic variations within these Italian goat breeds and should be of value for future studies to identify the relationships between this type of genetic variation and phenotypic traits.

          Abstract

          Copy-number variations (CNVs) are one of the widely dispersed forms of structural variations in mammalian genomes, and are present as deletions, insertions, or duplications. Only few studies have been conducted in goats on CNVs derived from SNP array data, and many local breeds still remain uncharacterized, e.g., the Sicilian goat dairy breeds. In this study, CNV detection was performed, starting from the genotypic data of 120 individuals, belonging to four local breeds (Argentata dell’Etna, Derivata di Siria, Girgentana, and Messinese), genotyped with the Illumina GoatSNP50 BeadChip array. Overall, 702 CNVs were identified in 107 individuals using PennCNV software based on the hidden Markov model algorithm. These were merged in 75 CNV regions (CNVRs), i.e., regions containing CNVs overlapped by at least 1 base pair, while 85 CNVs remained unique. The part of the genome covered by CNV events was 35.21 Mb (1.2% of the goat genome length). Functional annotation of the CNVRs allowed the identification of 139 genes/loci within the most frequent CNVRs that are involved in local adaptations, such as coat colour ( ADAMTS20 and EDNRA), mild behaviour ( NR3C2), immune response ( EXOC3L4 and TNFAIP2), reproduction ( GBP1 and GBP6), and olfactory receptors ( OR7E24). This study provides insights into the genomic variations for these Sicilian dairy goat breeds and should be of value for future studies to identify the relationships between this type of genetic variation and phenotypic traits.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Global variation in copy number in the human genome.

          Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural variation in the human genome.

            The first wave of information from the analysis of the human genome revealed SNPs to be the main source of genetic and phenotypic human variation. However, the advent of genome-scanning technologies has now uncovered an unexpectedly large extent of what we term 'structural variation' in the human genome. This comprises microscopic and, more commonly, submicroscopic variants, which include deletions, duplications and large-scale copy-number variants - collectively termed copy-number variants or copy-number polymorphisms - as well as insertions, inversions and translocations. Rapidly accumulating evidence indicates that structural variants can comprise millions of nucleotides of heterogeneity within every genome, and are likely to make an important contribution to human diversity and disease susceptibility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping.

              Array-CGH is a powerful tool for the detection of chromosomal aberrations. The introduction of high-density SNP genotyping technology to genomic profiling, termed SNP-CGH, represents a further advance, since simultaneous measurement of both signal intensity variations and changes in allelic composition makes it possible to detect both copy number changes and copy-neutral loss-of-heterozygosity (LOH) events. We demonstrate the utility of SNP-CGH with two Infinium whole-genome genotyping BeadChips, assaying 109,000 and 317,000 SNP loci, to detect chromosomal aberrations in samples bearing constitutional aberrations as well tumor samples at sub-100 kb effective resolution. Detected aberrations include homozygous deletions, hemizygous deletions, copy-neutral LOH, duplications, and amplifications. The statistical ability to detect common aberrations was modeled by analysis of an X chromosome titration model system, and sensitivity was modeled by titration of gDNA from a tumor cell with that of its paired normal cell line. Analysis was facilitated by using a genome browser that plots log ratios of normalized intensities and allelic ratios along the chromosomes. We developed two modes of SNP-CGH analysis, a single sample and a paired sample mode. The single sample mode computes log intensity ratios and allelic ratios by referencing to canonical genotype clusters generated from approximately 120 reference samples, whereas the paired sample mode uses a paired normal reference sample from the same individual. Finally, the two analysis modes are compared and contrasted for their utility in analyzing different types of input gDNA: low input amounts, fragmented gDNA, and Phi29 whole-genome pre-amplified DNA.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                16 June 2020
                June 2020
                : 10
                : 6
                : 1040
                Affiliations
                [1 ]Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; rosalia.digerlando@ 123456unipa.it (R.D.G.); salvatore.mastrangelo@ 123456unipa.it (S.M.); angelo.moscarelli@ 123456unipa.it (A.M.); marco.tolone@ 123456unipa.it (M.T.); baldassare.portolano@ 123456unipa.it (B.P.)
                [2 ]Dipartimento Scienze Veterinarie, University of Messina, 98168 Messina, Italy; asutera@ 123456unime.it
                Author notes
                Author information
                https://orcid.org/0000-0001-5135-6531
                https://orcid.org/0000-0001-6511-1981
                https://orcid.org/0000-0001-9527-6197
                Article
                animals-10-01040
                10.3390/ani10061040
                7341319
                32560248
                0f2ed197-275c-4526-83e7-4fde3c6e8f38
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 March 2020
                : 12 June 2020
                Categories
                Article

                copy number variation,genotyping array,sicilian goat breeds

                Comments

                Comment on this article