23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metal–organic frameworks meet scalable and sustainable synthesis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inspired by recent commercialisation of metal–organic frameworks, this review highlights challenges and recent advances in developing scalable and sustainable metal–organic synthesis.

          Abstract

          Over the past decade, metal–organic frameworks (MOFs) have emerged as enabling materials for a wide variety of sustainable technologies, leading to their recent commercialisation. However, whereas the commercialisation of MOFs and a large fraction of their potential applications are directed towards roles as “green materials” for a sustainable future, this is dependent on the availability of synthetic and manufacturing procedures mindful of sustainability and environmental impact. While the need for clean and sustainable methodologies has been embraced by organic synthesis and catalysis more than a decade ago, such development has been significantly slower in inorganic and metal–organic synthesis. At the same time, the environmental challenges of metal–organic chemistry are unique, as they combine the environmental impacts of organic chemistry with hazards associated with metal ions, their salts, and complexes. The recent and ongoing commercialisation of MOFs is signalling an urgent need to address these challenges. In this review we highlight recently developed evaluative criteria for green, sustainable, and industrially-acceptable metal–organic chemistry, along with six areas of recent experimental and theoretical progress that are relevant for developing cleaner, sustainable MOF synthesis: (1) using safer and/or biocompatible building blocks, (2) reducing energy input (3) using water or near-critical water as reaction media, (4) strategies to avoid bulk solvent, (5) continuous manufacturing and (6) theoretical prediction and design of MOF performance for given applications.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: not found
          • Article: not found

          Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luminescent metal-organic frameworks.

            Metal-organic frameworks (MOFs) display a wide range of luminescent behaviors resulting from the multifaceted nature of their structure. In this critical review we discuss the origins of MOF luminosity, which include the linker, the coordinated metal ions, antenna effects, excimer and exciplex formation, and guest molecules. The literature describing these effects is comprehensively surveyed, including a categorization of each report according to the type of luminescence observed. Finally, we discuss potential applications of luminescent MOFs. This review will be of interest to researchers and synthetic chemists attempting to design luminescent MOFs, and those engaged in the extension of MOFs to applications such as chemical, biological, and radiation detection, medical imaging, and electro-optical devices (141 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrogen storage in microporous metal-organic frameworks.

              Metal-organic framework-5 (MOF-5) of composition Zn4O(BDC)3 (BDC = 1,4-benzenedicarboxylate) with a cubic three-dimensional extended porous structure adsorbed hydrogen up to 4.5 weight percent (17.2 hydrogen molecules per formula unit) at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. Inelastic neutron scattering spectroscopy of the rotational transitions of the adsorbed hydrogen molecules indicates the presence of two well-defined binding sites (termed I and II), which we associate with hydrogen binding to zinc and the BDC linker, respectively. Preliminary studies on topologically similar isoreticular metal-organic framework-6 and -8 (IRMOF-6 and -8) having cyclobutylbenzene and naphthalene linkers, respectively, gave approximately double and quadruple (2.0 weight percent) the uptake found for MOF-5 at room temperature and 10 bar.
                Bookmark

                Author and article information

                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                2017
                2017
                : 19
                : 12
                : 2729-2747
                Affiliations
                [1 ]Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis
                [2 ]McGill University
                [3 ]Montreal
                [4 ]Canada
                [5 ]ACSYNAM
                Article
                10.1039/C7GC01078H
                0f38cba7-3fec-405d-9ff9-945a5e9cc7f1
                © 2017
                History

                Comments

                Comment on this article