15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Afferent arteriolar dilation to 11, 12-EET analogs involves PP2A activity and Ca2+-activated K+ Channels.

      Microcirculation (New York, N.y. : 1994)
      8,11,14-Eicosatrienoic Acid, analogs & derivatives, pharmacology, Animals, Arterioles, metabolism, Cyclic AMP, Kidney, blood supply, Large-Conductance Calcium-Activated Potassium Channels, antagonists & inhibitors, Male, Muscle Cells, Oxidoreductases, Protein Phosphatase 2, Rats, Rats, Sprague-Dawley, Structure-Activity Relationship, Vasodilation, drug effects, Vasodilator Agents

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The epoxygenase metabolite, 11, 12-epoxyeicosatrienoic acid (11, 12-EET), has renal vascular actions. 11, 12-EET analogs have been developed to determine the structure activity relationship for 11, 12-EET and as a tool to investigate signaling mechanisms responsible for afferent arteriolar dilation. We hypothesized that 11, 12-EET mediated afferent arteriolar dilation involves increased phosphoprotein phosphatase 2A (PP2A) and large-conductance calcium activated K+ (KCa) channels. We evaluated the chemically and/or metabolically table 11, 12-EET analogs: 11, 12-EET-N-methylsulfonimide (11, 12-EET-SI), 11-nonyloxy-undec-8(Z)-enoic acid (11, 12-ether-EET-8-ZE), and 11, 12-trans-oxidoeicosa-8(Z)-eonoic acid (11, 12-tetra-EET-8-ZE). Afferent arteriolar responses were assessed. Activation of KCa channels by 11, 12-EET analogs were established by single cell channel recordings in renal myocytes. Assessment of renal vascular responses revealed that 11, 12-EET analogs increased afferent arteriolar diameter. Vasodilator responses to 11, 12-EET analogs were abolished by K+ channel or PP2A inhibition. 11, 12-EET analogs activated renal myocyte large-conductance KCa channels. 11, 12-EET analogs increased cAMP by 2-fold and PP2A activity increased 3-8 fold in renal myocytes. PP2A inhibition did not significantly affect the 11, 12-EET analog mediated increase in cAMP and PP2A increased renal myocyte KCa channel activity to a much greater extent than PKA. These data support the concept that 11, 12-EET utilizes PP2A dependent pathways to activate large-conductance KCa channels and dilate the afferent arteriole.

          Related collections

          Author and article information

          Comments

          Comment on this article