8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Compliance with Australian Orthopaedic Association guidelines does not reduce the risk of venous thromboembolism after total hip and knee arthroplasty

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Preventing avoidable venous-thrombo-embolism (VTE) is a priority to improve patient and service outcomes after total hip and total knee arthroplasty (THA, TKA), but compliance with relevant clinical guidelines varies. This study aims to determine the degree to which prophylaxis was compliant with Australian Orthopaedic Association (AOA) VTE prophylaxis guidelines and whether non-compliance is associated with increased risk of VTE. A prospective multi-centre cohort study of adults with osteoarthritis undergoing primary TKA/THA was completed at 19 high-volume public and private hospitals. Data were collected prior to surgery and for one-year post-surgery. Logistic regression was undertaken to explore associations between non-compliance with AOA VTE prophylaxis guidelines and symptomatic 90-day VTE outcomes. Data were analysed for 1838 participants from 19 sites. The rate of non-compliance with all clinical guideline recommendations was 20.1% (N = 369), with 14.1% (N = 259) non-compliance for risk-stratified prophylaxis, 35.8% (N = 658) for duration, and 67.8% (N = 1246) for other general recommendations. Symptomatic VTE was experienced up to 90-days post-surgery by 48 people (2.6%). Overall guideline non-compliance (AOR = 0.93, 95%CI = 0.4 to 1.3, p = 0.86) was not associated with a lower risk of symptomatic 90-day VTE. Results were consistent when people with high bleeding risk were excluded (AOR = 0.94, 95%CI = 0.44 to 2.34, p = 0.89). Non-compliance with the AOA VTE prophylaxis guidelines was not associated with risk of 90-day VTE after arthroplasty. This counterintuitive finding is concerning and necessitates a rigorous review of the AOA VTE prevention clinical guideline.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies

          Introduction Many questions in medical research are investigated in observational studies [1]. Much of the research into the cause of diseases relies on cohort, case-control, or cross-sectional studies. Observational studies also have a role in research into the benefits and harms of medical interventions [2]. Randomised trials cannot answer all important questions about a given intervention. For example, observational studies are more suitable to detect rare or late adverse effects of treatments, and are more likely to provide an indication of what is achieved in daily medical practice [3]. Research should be reported transparently so that readers can follow what was planned, what was done, what was found, and what conclusions were drawn. The credibility of research depends on a critical assessment by others of the strengths and weaknesses in study design, conduct, and analysis. Transparent reporting is also needed to judge whether and how results can be included in systematic reviews [4,5]. However, in published observational research important information is often missing or unclear. An analysis of epidemiological studies published in general medical and specialist journals found that the rationale behind the choice of potential confounding variables was often not reported [6]. Only few reports of case-control studies in psychiatry explained the methods used to identify cases and controls [7]. In a survey of longitudinal studies in stroke research, 17 of 49 articles (35%) did not specify the eligibility criteria [8]. Others have argued that without sufficient clarity of reporting, the benefits of research might be achieved more slowly [9], and that there is a need for guidance in reporting observational studies [10,11]. Recommendations on the reporting of research can improve reporting quality. The Consolidated Standards of Reporting Trials (CONSORT) Statement was developed in 1996 and revised 5 years later [12]. Many medical journals supported this initiative [13], which has helped to improve the quality of reports of randomised trials [14,15]. Similar initiatives have followed for other research areas—e.g., for the reporting of meta-analyses of randomised trials [16] or diagnostic studies [17]. We established a network of methodologists, researchers, and journal editors to develop recommendations for the reporting of observational research: the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement. Aims and Use of the STROBE Statement The STROBE Statement is a checklist of items that should be addressed in articles reporting on the 3 main study designs of analytical epidemiology: cohort, case-control, and cross-sectional studies. The intention is solely to provide guidance on how to report observational research well: these recommendations are not prescriptions for designing or conducting studies. Also, while clarity of reporting is a prerequisite to evaluation, the checklist is not an instrument to evaluate the quality of observational research. Here we present the STROBE Statement and explain how it was developed. In a detailed companion paper, the Explanation and Elaboration article [18–20], we justify the inclusion of the different checklist items and give methodological background and published examples of what we consider transparent reporting. We strongly recommend using the STROBE checklist in conjunction with the explanatory article, which is available freely on the Web sites of PLoS Medicine (http://www.plosmedicine.org/), Annals of Internal Medicine (http://www.annals.org/), and Epidemiology (http://www.epidem.com/). Development of the STROBE Statement We established the STROBE Initiative in 2004, obtained funding for a workshop and set up a Web site (http://www.strobe-statement.org/). We searched textbooks, bibliographic databases, reference lists, and personal files for relevant material, including previous recommendations, empirical studies of reporting and articles describing relevant methodological research. Because observational research makes use of many different study designs, we felt that the scope of STROBE had to be clearly defined early on. We decided to focus on the 3 study designs that are used most widely in analytical observational research: cohort, case-control, and cross-sectional studies. We organised a 2-day workshop in Bristol, UK, in September 2004. 23 individuals attended this meeting, including editorial staff from Annals of Internal Medicine, BMJ, Bulletin of the World Health Organization, International Journal of Epidemiology, JAMA, Preventive Medicine, and The Lancet, as well as epidemiologists, methodologists, statisticians, and practitioners from Europe and North America. Written contributions were sought from 10 other individuals who declared an interest in contributing to STROBE, but could not attend. Three working groups identified items deemed to be important to include in checklists for each type of study. A provisional list of items prepared in advance (available from our Web site) was used to facilitate discussions. The 3 draft checklists were then discussed by all participants and, where possible, items were revised to make them applicable to all three study designs. In a final plenary session, the group decided on the strategy for finalizing and disseminating the STROBE Statement. After the workshop we drafted a combined checklist including all three designs and made it available on our Web site. We invited participants and additional scientists and editors to comment on this draft checklist. We subsequently published 3 revisions on the Web site, and 2 summaries of comments received and changes made. During this process the coordinating group (i.e., the authors of the present paper) met on eight occasions for 1 or 2 days and held several telephone conferences to revise the checklist and to prepare the present paper and the Explanation and Elaboration paper [18–20]. The coordinating group invited 3 additional co-authors with methodological and editorial expertise to help write the Explanation and Elaboration paper, and sought feedback from more than 30 people, who are listed at the end of this paper. We allowed several weeks for comments on subsequent drafts of the paper and reminded collaborators about deadlines by e-mail. STROBE Components The STROBE Statement is a checklist of 22 items that we consider essential for good reporting of observational studies (Table 1). These items relate to the article's title and abstract (item 1), the introduction (items 2 and 3), methods (items 4–12), results (items 13–17) and discussion sections (items 18–21), and other information (item 22 on funding). 18 items are common to all three designs, while four (items 6, 12, 14, and 15) are design-specific, with different versions for all or part of the item. For some items (indicated by asterisks), information should be given separately for cases and controls in case-control studies, or exposed and unexposed groups in cohort and cross-sectional studies. Although presented here as a single checklist, separate checklists are available for each of the 3 study designs on the STROBE Web site. Table 1 The STROBE Statement—Checklist of Items That Should Be Addressed in Reports of Observational Studies Implications and Limitations The STROBE Statement was developed to assist authors when writing up analytical observational studies, to support editors and reviewers when considering such articles for publication, and to help readers when critically appraising published articles. We developed the checklist through an open process, taking into account the experience gained with previous initiatives, in particular CONSORT. We reviewed the relevant empirical evidence as well as methodological work, and subjected consecutive drafts to an extensive iterative process of consultation. The checklist presented here is thus based on input from a large number of individuals with diverse backgrounds and perspectives. The comprehensive explanatory article [18–20], which is intended for use alongside the checklist, also benefited greatly from this consultation process. Observational studies serve a wide range of purposes, on a continuum from the discovery of new findings to the confirmation or refutation of previous findings [18–20]. Some studies are essentially exploratory and raise interesting hypotheses. Others pursue clearly defined hypotheses in available data. In yet another type of studies, the collection of new data is planned carefully on the basis of an existing hypothesis. We believe the present checklist can be useful for all these studies, since the readers always need to know what was planned (and what was not), what was done, what was found, and what the results mean. We acknowledge that STROBE is currently limited to three main observational study designs. We would welcome extensions that adapt the checklist to other designs—e.g., case-crossover studies or ecological studies—and also to specific topic areas. Four extensions are now available for the CONSORT statement [21–24]. A first extension to STROBE is underway for gene-disease association studies: the STROBE Extension to Genetic Association studies (STREGA) initiative [25]. We ask those who aim to develop extensions of the STROBE Statement to contact the coordinating group first to avoid duplication of effort. The STROBE Statement should not be interpreted as an attempt to prescribe the reporting of observational research in a rigid format. The checklist items should be addressed in sufficient detail and with clarity somewhere in an article, but the order and format for presenting information depends on author preferences, journal style, and the traditions of the research field. For instance, we discuss the reporting of results under a number of separate items, while recognizing that authors might address several items within a single section of text or in a table. Also, item 22, on the source of funding and the role of funders, could be addressed in an appendix or in the methods section of the article. We do not aim at standardising reporting. Authors of randomised clinical trials were asked by an editor of a specialist medical journal to “CONSORT” their manuscripts on submission [26]. We believe that manuscripts should not be “STROBEd”, in the sense of regulating style or terminology. We encourage authors to use narrative elements, including the description of illustrative cases, to complement the essential information about their study, and to make their articles an interesting read [27]. We emphasise that the STROBE Statement was not developed as a tool for assessing the quality of published observational research. Such instruments have been developed by other groups and were the subject of a recent systematic review [28]. In the Explanation and Elaboration paper, we used several examples of good reporting from studies whose results were not confirmed in further research – the important feature was the good reporting, not whether the research was of good quality. However, if STROBE is adopted by authors and journals, issues such as confounding, bias, and generalisability could become more transparent, which might help temper the over-enthusiastic reporting of new findings in the scientific community and popular media [29], and improve the methodology of studies in the long term. Better reporting may also help to have more informed decisions about when new studies are needed, and what they should address. We did not undertake a comprehensive systematic review for each of the checklist items and sub-items, or do our own research to fill gaps in the evidence base. Further, although no one was excluded from the process, the composition of the group of contributors was influenced by existing networks and was not representative in terms of geography (it was dominated by contributors from Europe and North America) and probably was not representative in terms of research interests and disciplines. We stress that STROBE and other recommendations on the reporting of research should be seen as evolving documents that require continual assessment, refinement, and, if necessary, change. We welcome suggestions for the further dissemination of STROBE—e.g., by re-publication of the present article in specialist journals and in journals published in other languages. Groups or individuals who intend to translate the checklist to other languages should consult the coordinating group beforehand. We will revise the checklist in the future, taking into account comments, criticism, new evidence, and experience from its use. We invite readers to submit their comments via the STROBE Web site (http://www.strobe-statement.org/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Guide to clinical practice guidelines: the current state of play

            Introduction Extensive research has been undertaken over the last 30 years on the methods underpinning clinical practice guidelines (CPGs), including their development, updating, reporting, tailoring for specific purposes, implementation and evaluation. This has resulted in an increasing number of terms, tools and acronyms. Over time, CPGs have shifted from opinion-based to evidence-informed, including increasingly sophisticated methodologies and implementation strategies, and thus keeping abreast of evolution in this field of research can be challenging. Methods This article collates findings from an extensive document search, to provide a guide describing standards, methods and systems reported in the current CPG methodology and implementation literature. This guide is targeted at those working in health care quality and safety and responsible for either commissioning, researching or delivering health care. It is presented in a way that can be updated as the field expands. Conclusion CPG development and implementation have attracted the most international interest and activity, whilst CPG updating, adopting (with or without contextualization), adapting and impact evaluation are less well addressed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical Effectiveness and Safety of Aspirin for Venous Thromboembolism Prophylaxis After Total Hip and Knee Replacement: A Systematic Review and Meta-analysis of Randomized Clinical Trials

              This systematic review and meta-analysis of randomized clinical trials assesses the effectiveness and safety of aspirin for venous thromboembolism prophylaxis after total hip replacement and total knee replacement. What is the effectiveness and safety of aspirin for venous thromboembolism prophylaxis after total hip and knee replacement? In this systematic review and meta-analysis of 13 randomized clinical trials (6060 participants), the risk of venous thromboembolism after total hip and knee replacement was not statistically significantly different when using aspirin compared with other anticoagulants. Adverse events, including major bleeding, wound hematoma, and infection, were not statistically significantly different in patients receiving aspirin compared with other anticoagulants. The effectiveness and safety of aspirin did not appear to have been statistically significantly different from other anticoagulants used for venous thromboembolism prophylaxis after total hip and knee replacement and hence remains an option for use. Patients undergoing total hip replacement (THR) and total knee replacement (TKR) receive venous thromboembolism (VTE) pharmacoprophylaxis. It is unclear which anticoagulant is preferable. Observational data suggest aspirin provides effective VTE prophylaxis. To assess the effectiveness and safety of aspirin for VTE prophylaxis after THR and TKR. A systematic review and meta-analysis was performed of randomized clinical trials (RCTs), with no language restrictions, from inception to September 19, 2019, using MEDLINE, Embase, Web of Science, Cochrane Library, and bibliographic searches. The computer-based searches combined terms and combinations of keywords related to the population (eg, hip replacement , knee replacement , hip arthroplasty , and knee arthroplasty ), drug intervention (eg, aspirin , heparin , clexane , dabigatran , rivaroxaban , and warfarin ), and outcome (eg, venous thromboembolism , deep vein thrombosis , pulmonary embolism , and bleeding ) in humans. This study included RCTs assessing the effectiveness and safety of aspirin for VTE prophylaxis compared with other anticoagulants in adults undergoing THR and TKR. The RCTs with a placebo control group were excluded. The searches and study selection were independently performed. This study followed PRISMA recommendations and used the Cochrane Collaboration’s risk of bias tool. Data were screened and extracted independently by both reviewers. Study-specific relative risks (RRs) were aggregated using random-effects models. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The primary outcome was any postoperative VTE (asymptomatic or symptomatic). Secondary outcomes were adverse events associated with therapy, including bleeding. Of 437 identified articles, 13 RCTs were included (6060 participants; 3466 [57.2%] women; mean age, 63.0 years). The RR of VTE after THR and TKR was 1.12 (95% CI, 0.78-1.62) for aspirin compared with other anticoagulants. Comparable findings were observed for deep vein thrombosis (DVT) (RR, 1.04; 95% CI, 0.72-1.51) and pulmonary embolism (PE) (RR, 1.01; 95% CI, 0.68-1.48). The risk of adverse events, including major bleeding, wound hematoma, and wound infection, was not statistically significantly different in patients receiving aspirin vs other anticoagulants. When analyzing THRs and TKRs separately, there was no statistically significant difference in the risk of VTE, DVT, and PE between aspirin and other anticoagulants. Aspirin had a VTE risk not statistically significantly different from low-molecular-weight heparin (RR, 0.76; 95% CI, 0.37-1.56) or rivaroxaban (RR, 1.52; 95% CI, 0.56-4.12). The quality of the evidence ranged from low to high. In terms of clinical effectiveness and safety profile, aspirin did not differ statistically significantly from other anticoagulants used for VTE prophylaxis after THR and TKR. Future trials should focus on noninferiority analysis of aspirin compared with alternative anticoagulants and cost-effectiveness.
                Bookmark

                Author and article information

                Contributors
                helen.badgehawke@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 March 2024
                12 March 2024
                2024
                : 14
                : 5955
                Affiliations
                [1 ]Whitlam Orthopaedic Research Centre, 1 Campbell Street, Liverpool, 2071 Australia
                [2 ]South Western Sydney Clinical School, UNSW, ( https://ror.org/03r8z3t63) 1 Elizabeth Street, Liverpool, 2071 Australia
                [3 ]GRID grid.429098.e, Ingham Institute for Applied Medical Research, ; 1 Campbell Street, Liverpool, 2071 Australia
                [4 ]Australian Catholic University, ( https://ror.org/04cxm4j25) 8-20 Napier Street, North Sydney, 2060 Australia
                [5 ]School of Public Health, The University of New South Wales, UNSW Kensington Campus, 2033, ( https://ror.org/03r8z3t63) Botany Street, Kensington, NSW 2052 Australia
                [6 ]South Western Sydney Local Health District, ( https://ror.org/05j37e495) 1 Elizabeth Street, Liverpool, 2071 Australia
                [7 ]University of Sydney, ( https://ror.org/0384j8v12) Fisher Road, Camperdown, NSW 2006 Australia
                [8 ]Westmead Hospital, ( https://ror.org/04gp5yv64) Cnr Hawkesbury Road and Darcy Road, Westmead, NSW 2145 Australia
                [9 ]GRID grid.1029.a, ISNI 0000 0000 9939 5719, Western Sydney University, ; Campbelltown, NSW 2560 Australia
                [10 ]Sydney School of Population Health, The University of Sydney, ( https://ror.org/0384j8v12) Edward Ford Building (A27) Fisher Road, Camperdown, NSW 2006 Australia
                Article
                54916
                10.1038/s41598-024-54916-x
                10928067
                0f9d7062-fa87-48f5-a773-36579e9c783b
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 April 2022
                : 18 February 2024
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                primary total hip arthroplasty,primary total knee arthroplasty,clinical guidelines,venous thromboembolism,prophylaxis,surgical complications,health services,osteoarthritis

                Comments

                Comment on this article