21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we identify several gaps in our understanding of “if” and “how” DYN and KORs modulate addictive behavior in a sex-dependent manner. Future work may address these gaps by building on the mechanistic studies outlined in this review. Ultimately this will enable the development of novel and effective addiction treatments tailored to either males or females.

          Related collections

          Most cited references198

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology of women and depression.

          R Kessler (2003)
          Depression is the leading cause of disease-related disability among women in the world today. Depression is much more common among women than men, with female/male risk ratios roughly 2:1. Recent epidemiological research is reviewed. Implications are suggested for needed future research. The higher prevalence of depression among women than men is due to higher risk of first onset, not to differential persistence or recurrence. Although the gender difference first emerges in puberty, other experiences related to changes in sex hormones (pregnancy, menopause, use of oral contraceptives, and use of hormone replacement therapy) do not significantly influence major depression. These observations suggest that the key to understanding the higher rates of depression among women than men lies in an investigation of the joint effects of biological vulnerabilities and environmental provoking experiences. Advancing understanding of female depression will require future epidemiologic research to focus on first onsets and to follow incident cohorts of young people through the pubertal transition into young adulthood with fine-grained measures of both sex hormones and gender-related environmental experiences. Experimental interventions aimed at primary prevention by jointly manipulating putative biological and environmental risk factors will likely be needed to adjudicate between contending causal hypotheses regarding the separate and joint effects of interrelated risk factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Addiction and the brain antireward system.

            A neurobiological model of the brain emotional systems has been proposed to explain the persistent changes in motivation that are associated with vulnerability to relapse in addiction, and this model may generalize to other psychopathology associated with dysregulated motivational systems. In this framework, addiction is conceptualized as a cycle of decreased function of brain reward systems and recruitment of antireward systems that progressively worsen, resulting in the compulsive use of drugs. Counteradaptive processes, such as opponent process, that are part of the normal homeostatic limitation of reward function fail to return within the normal homeostatic range and are hypothesized to repeatedly drive the allostatic state. Excessive drug taking thus results in not only the short-term amelioration of the reward deficit but also suppression of the antireward system. However, in the long term, there is worsening of the underlying neurochemical dysregulations that ultimately form an allostatic state (decreased dopamine and opioid peptide function, increased corticotropin-releasing factor activity). This allostatic state is hypothesized to be reflected in a chronic deviation of reward set point that is fueled not only by dysregulation of reward circuits per se but also by recruitment of brain and hormonal stress responses. Vulnerability to addiction may involve genetic comorbidity and developmental factors at the molecular, cellular, or neurocircuitry levels that sensitize the brain antireward systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of opioid receptor-dependent signaling and behavior.

              Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled and activate inhibitory G proteins. These receptors form homo- and heterodimeric complexes and signal to kinase cascades and scaffold a variety of proteins.The authors discuss classic mechanisms and developments in understanding opioid tolerance and opioid receptor signaling and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. The authors put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, the authors conclude there is a continued need for more translational work on opioid receptors in vivo.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                16 December 2015
                2015
                : 9
                : 466
                Affiliations
                Department of Psychiatry, Harvard Medical School, McLean Hospital Belmont, MA, USA
                Author notes

                Edited by: Styliani (Stella) Vlachou, Dublin City University, Ireland

                Reviewed by: Glenn W. Stevenson, University of New England, USA; Regina A. Mangieri, The University of Texas at Austin, USA

                *Correspondence: Elena H. Chartoff echartoff@ 123456mclean.harvard.edu

                This article was submitted to Neuropharmacology, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2015.00466
                4679873
                26733781
                0fc61b92-efc6-4f15-a7ab-ddb0ca234693
                Copyright © 2015 Chartoff and Mavrikaki.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 September 2015
                : 23 November 2015
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 215, Pages: 16, Words: 15262
                Funding
                Funded by: NIDA 10.13039/100000026
                Award ID: DA033526
                Categories
                Pharmacology
                Review

                Neurosciences
                female,depression,drug withdrawal,antinociception,estrogens,dopamine,analgesia
                Neurosciences
                female, depression, drug withdrawal, antinociception, estrogens, dopamine, analgesia

                Comments

                Comment on this article