6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biomarkers for central serous chorioretinopathy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Central serous chorioretinopathy (CSCR) is a common chorioretinal disease characterized by serous retinal detachment that most commonly involves the macular region. Although the natural history of the acute form shows a self-limiting course, a significant number of patients suffer from recurrent episodes leading to chronic disease, often leaving patients with residual visual impairment. Visual morbidity is often worsened by a delay in the diagnosis due to the incorrect understanding of the particular biomarkers of the disease. The aim of this review is to provide clinical understanding of the biomarkers of CSCR with an emphasis on the most recent findings in patient demographics, risk factors, clinical imaging findings, and management options. Patients with these biomarkers, age 30–44 years, male gender, increased stress levels, hypercortisolism (endogenous and exogenous exposures), sleep disturbance, pregnancy, and genetic predisposition have increased susceptibility to CSCR. Also, biomarkers on optical coherence tomography (OCT) such as choroidal thickness (CT) and choroidal vascularity index (CVI) showed good diagnostic and prognostic significance in the management of CSCR. There are nonspecific features of CSCR on OCT and OCT angiography such as choroidal neovascularization, photoreceptor alteration/cone density loss, and flat irregular pigment epithelium detachment. We described rare complications of CSCR such as cystoid macular edema (CME) and cystoid macular degeneration (CMD). Patients with CME recovered some vision when treated with anti-vascular endothelial growth factors (anti-VEGFs). Patients with CMD had irreversible macular damage even after treatment with anti-VEGFs.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Central serous chorioretinopathy: Recent findings and new physiopathology hypothesis.

          Central serous chorioretinopathy (CSCR) is a major cause of vision threat among middle-aged male individuals. Multimodal imaging led to the description of a wide range of CSCR manifestations, and highlighted the contribution of the choroid and pigment epithelium in CSCR pathogenesis. However, the exact molecular mechanisms of CSCR have remained uncertain. The aim of this review is to recapitulate the clinical understanding of CSCR, with an emphasis on the most recent findings on epidemiology, risk factors, clinical and imaging diagnosis, and treatments options. It also gives an overview of the novel mineralocorticoid pathway hypothesis, from animal data to clinical evidences of the biological efficacy of oral mineralocorticoid antagonists in acute and chronic CSCR patients. In rodents, activation of the mineralocorticoid pathway in ocular cells either by intravitreous injection of its specific ligand, aldosterone, or by over-expression of the receptor specifically in the vascular endothelium, induced ocular phenotypes carrying many features of acute CSCR. Molecular mechanisms include expression of the calcium-dependent potassium channel (KCa2.3) in the endothelium of choroidal vessels, inducing subsequent vasodilation. Inappropriate or over-activation of the mineralocorticoid receptor in ocular cells and other tissues (such as brain, vessels) could link CSCR with the known co-morbidities observed in CSCR patients, including hypertension, coronary disease and psychological stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A review of optical coherence tomography angiography (OCTA)

            Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging technique that generates volumetric angiography images in a matter of seconds. This is a nascent technology with a potential wide applicability for retinal vascular disease. At present, level 1 evidence of the technology’s clinical applications doesn’t exist. In this paper, we introduce the technology, review the available English language publications regarding OCTA, and compare it with the current angiographic gold standards, fluorescein angiography (FA) and indocyanine green angiography (ICGA). Finally we summarize its potential application to retinal vascular diseases. OCTA is quick and non-invasive, and provides volumetric data with the clinical capability of specifically localizing and delineating pathology along with the ability to show both structural and blood flow information in tandem. Its current limitations include a relatively small field of view, inability to show leakage, and proclivity for image artifact due to patient movement/blinking. Published studies hint at OCTA’s potential efficacy in the evaluation of common ophthalmologic diseases such age related macular degeneration (AMD), diabetic retinopathy, artery and vein occlusions, and glaucoma. OCTA can detect changes in choroidal blood vessel flow and can elucidate the presence of choroidal neovascularization (CNV) in a variety of conditions but especially in AMD. It provides a highly detailed view of the retinal vasculature, which allows for accurate delineation of the foveal avascular zone (FAZ) in diabetic eyes and detection of subtle microvascular abnormalities in diabetic and vascular occlusive eyes. Optic disc perfusion in glaucomatous eyes is notable as well on OCTA. Further studies are needed to more definitively determine OCTA’s utility in the clinical setting and to establish if this technology may offer a non-invasive option of visualizing the retinal vasculature in detail.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study

              The vascularity of the choroid has been implicated in the pathogenesis of various eye diseases. To date, no established quantifiable parameters to estimate vascular status of the choroid exists. Choroidal vascularity index (CVI) may potentially be used to assess vascular status of the choroid. We aimed to establish normative database for CVI and identify factors associated with CVI in healthy eyes. In this population-based study on 345 healthy eyes, choroidal enhanced depth imaging optical coherence tomography scans were segmented by modified image binarization technique. Total subfoveal choroidal area (TCA) was segmented into luminal (LA) and stromal (SA) area. CVI was calculated as the proportion of LA to TCA. Linear regression was used to identify ocular and systemic factors associated with CVI and subfoveal choroidal thickness (SFCT). Subfoveal CVI ranged from 60.07 to 71.27% with a mean value of 65.61 ± 2.33%. CVI was less variable than SFCT (coefficient of variation for CVI was 3.55 vs 40.30 for SFCT). Higher CVI was associated with thicker SFCT, but not associated with most physiological variables. CVI was elucidated as a significant determinant of SFCT. While SFCT was affected by many factors, CVI remained unaffected suggesting CVI to be a more robust marker of choroidal diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Ther Adv Ophthalmol
                Ther Adv Ophthalmol
                OED
                spoed
                Therapeutic Advances in Ophthalmology
                SAGE Publications (Sage UK: London, England )
                2515-8414
                24 August 2020
                Jan-Dec 2020
                : 12
                : 2515841420950846
                Affiliations
                [1-2515841420950846]School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
                [2-2515841420950846]Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
                [3-2515841420950846]Jacobs Retina Center at Shiley Eye Center, University of California, San Diego, La Jolla, CA, USA
                [4-2515841420950846]School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
                [5-2515841420950846]Department of Ophthalmology, Military Medical Academy, St. Petersburg, Russia
                [6-2515841420950846]Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
                [7-2515841420950846]Faculty—Clinician, UPMC Eye Center, Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA
                Author notes
                Author information
                https://orcid.org/0000-0003-1855-4610
                Article
                10.1177_2515841420950846
                10.1177/2515841420950846
                7448152
                0ff9a513-7f0d-4226-8d39-3a6aabf16ae0
                © The Author(s), 2020

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 12 May 2020
                : 27 July 2020
                Categories
                Review
                Custom metadata
                January-December 2020
                ts1

                biomarkers,central serous chorioretinopathy,fluorescein angiography,indocyanine green angiography,optical coherence tomography,optical coherence tomography angiography

                Comments

                Comment on this article