29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      PuttingParasemiain its phylogenetic place: a molecular analysis of the subtribe Arctiina (Lepidoptera) : Molecular phylogeny of Arctiina

      , , ,  
      Systematic Entomology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Editorial

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of lepidoptera.

            Increasing the number of characters used in phylogenetic studies is the next crucial step towards generating robust and stable phylogenetic hypotheses - i.e., strongly supported and consistent across reconstruction method. Here we describe a genomic approach to finding new protein-coding genes for systematics in nonmodel taxa, which can be PCR amplified from standard, slightly degraded genomic DNA extracts. We test this approach on Lepidoptera, searching the draft genomic sequence of the silk moth Bombyx mori, for exons > 500 bp in length, removing annotated gene families, and compared remaining exons with butterfly EST databases to identify conserved regions for primer design. These primers were tested on a set of 65 taxa primarily in the butterfly family Nymphalidae. We were able to identify and amplify six previously unused gene regions (Arginine Kinase, GAPDH, IDH, MDH, RpS2, and RpS5) and two rarely used gene regions (CAD and DDC) that when added to the three traditional gene regions (COI, EF-1alpha and wingless) gave a data set of 8114 bp. Phylogenetic robustness and stability increased with increasing numbers of genes. Smaller taxanomic subsets were also robust when using the full gene data set. The full 11-gene data set was robust and stable across reconstruction methods, recovering the major lineages and strongly supporting relationships within them. Our methods and insights should be applicable to taxonomic groups having a single genomic reference species and several EST databases from taxa that diverged less than 100 million years ago.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Linking the evolution and form of warning coloration in nature.

              Many animals are toxic or unpalatable and signal this to predators with warning signals (aposematism). Aposematic appearance has long been a classical system to study predator-prey interactions, communication and signalling, and animal behaviour and learning. The area has received considerable empirical and theoretical investigation. However, most research has centred on understanding the initial evolution of aposematism, despite the fact that these studies often tell us little about the form and diversity of real warning signals in nature. In contrast, less attention has been given to the mechanistic basis of aposematic markings; that is, 'what makes an effective warning signal?', and the efficacy of warning signals has been neglected. Furthermore, unlike other areas of adaptive coloration research (such as camouflage and mate choice), studies of warning coloration have often been slow to address predator vision and psychology. Here, we review the current understanding of warning signal form, with an aim to comprehend the diversity of warning signals in nature. We present hypotheses and suggestions for future work regarding our current understanding of several inter-related questions covering the form of warning signals and their relationship with predator vision, learning, and links to broader issues in evolutionary ecology such as mate choice and speciation.
                Bookmark

                Author and article information

                Journal
                Systematic Entomology
                Syst Entomol
                Wiley-Blackwell
                03076970
                October 2016
                October 29 2016
                : 41
                : 4
                : 844-853
                Article
                10.1111/syen.12194
                10026853-300e-406c-ab52-d80a8421b68a
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article