7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic–pituitary–adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal–infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Age-related change in executive function: developmental trends and a latent variable analysis.

          This study examined the developmental trajectories of three frequently postulated executive function (EF) components, Working Memory, Shifting, and Inhibition of responses, and their relation to performance on standard, but complex, neuropsychological EF tasks, the Wisconsin Card Sorting Task (WCST), and the Tower of London (ToL). Participants in four age groups (7-, 11-, 15-, and 21-year olds) carried out nine basic experimental tasks (three tasks for each EF), the WCST, and the ToL. Analyses were done in two steps: (1) analyses of (co)variance to examine developmental trends in individual EF tasks while correcting for basic processing speed, (2) confirmatory factor analysis to extract latent variables from the nine basic EF tasks, and to explain variance in the performance on WCST and ToL, using these latent variables. Analyses of (co)variance revealed a continuation of EF development into adolescence. Confirmatory factor analysis yielded two common factors: Working Memory and Shifting. However, the variables assumed to tap Inhibition proved unrelated. At a latent level, again correcting for basic processing speed, the development of Shifting was seen to continue into adolescence, while Working Memory continued to develop into young-adulthood. Regression analyses revealed that Working Memory contributed most strongly to WCST performance in all age groups. These results suggest that EF component processes develop at different rates, and that it is important to recognize both the unity and diversity of EF component processes in studying the development of EF.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Executive Functions and Developmental Psychopathology

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Critical period regulation.

              Neuronal circuits are shaped by experience during critical periods of early postnatal life. The ability to control the timing, duration, and closure of these heightened levels of brain plasticity has recently become experimentally accessible, especially in the developing visual system. This review summarizes our current understanding of known critical periods across several systems and species. It delineates a number of emerging principles: functional competition between inputs, role for electrical activity, structural consolidation, regulation by experience (not simply age), special role for inhibition in the CNS, potent influence of attention and motivation, unique timing and duration, as well as use of distinct molecular mechanisms across brain regions and the potential for reactivation in adulthood. A deeper understanding of critical periods will open new avenues to "nurture the brain"-from international efforts to link brain science and education to improving recovery from injury and devising new strategies for therapy and lifelong learning.
                Bookmark

                Author and article information

                Journal
                applab
                Development and Psychopathology
                Dev Psychopathol
                Cambridge University Press (CUP)
                0954-5794
                1469-2198
                May 2015
                May 6 2015
                : 27
                : 02
                : 347-367
                Article
                10.1017/S0954579415000036
                5299387
                25997759
                1049bd2d-a40d-40a1-b6a8-d229de64c5d8
                © 2015
                History

                Comments

                Comment on this article