36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 ( CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor ( BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenetic programming by maternal behavior.

          Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABN) by rat mothers altered the offspring epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of LG and ABN were found to have differences in DNA methylation, as compared to offspring of 'low-LG-ABN' mothers. These differences emerged over the first week of life, were reversed with cross-fostering, persisted into adulthood and were associated with altered histone acetylation and transcription factor (NGFI-A) binding to the GR promoter. Central infusion of a histone deacetylase inhibitor removed the group differences in histone acetylation, DNA methylation, NGFI-A binding, GR expression and hypothalamic-pituitary-adrenal (HPA) responses to stress, suggesting a causal relation among epigenomic state, GR expression and the maternal effect on stress responses in the offspring. Thus we show that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action.

            To better understand the molecular mechanisms of depression and antidepressant action, we administered chronic social defeat stress followed by chronic imipramine (a tricyclic antidepressant) to mice and studied adaptations at the levels of gene expression and chromatin remodeling of five brain-derived neurotrophic factor (Bdnf) splice variant mRNAs (I-V) and their unique promoters in the hippocampus. Defeat stress induced lasting downregulation of Bdnf transcripts III and IV and robustly increased repressive histone methylation at their corresponding promoters. Chronic imipramine reversed this downregulation and increased histone acetylation at these promoters. This hyperacetylation by chronic imipramine was associated with a selective downregulation of histone deacetylase (Hdac) 5. Furthermore, viral-mediated HDAC5 overexpression in the hippocampus blocked imipramine's ability to reverse depression-like behavior. These experiments underscore an important role for histone remodeling in the pathophysiology and treatment of depression and highlight the therapeutic potential for histone methylation and deacetylation inhibitors in depression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lasting epigenetic influence of early-life adversity on the BDNF gene.

              Childhood maltreatment and early trauma leave lasting imprints on neural mechanisms of cognition and emotion. With a rat model of infant maltreatment by a caregiver, we investigated whether early-life adversity leaves lasting epigenetic marks at the brain-derived neurotrophic factor (BDNF) gene in the central nervous system. During the first postnatal week, we exposed infant rats to stressed caretakers that predominately displayed abusive behaviors. We then assessed DNA methylation patterns and gene expression throughout the life span as well as DNA methylation patterns in the next generation of infants. Early maltreatment produced persisting changes in methylation of BDNF DNA that caused altered BDNF gene expression in the adult prefrontal cortex. Furthermore, we observed altered BDNF DNA methylation in offspring of females that had previously experienced the maltreatment regimen. These results highlight an epigenetic molecular mechanism potentially underlying lifelong and transgenerational perpetuation of changes in gene expression and behavior incited by early abuse and neglect.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                01 June 2015
                2015
                : 9
                : 145
                Affiliations
                [1] 1Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
                [2] 2Department of Psychology, University of Toronto Toronto, ON, Canada
                [3] 3Department of Physiology, University of Toronto Toronto, ON, Canada
                Author notes

                Edited by: Richard G. Hunter, Rockefeller University, USA

                Reviewed by: Phillip R. Zoladz, Ohio Northern University, USA; Tamas Kozicz, Radboud University Medical Center, Netherlands

                *Correspondence: Patrick O. McGowan, Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada patrick.mcgowan@ 123456utoronto.ca
                Article
                10.3389/fnbeh.2015.00145
                4450170
                26082698
                1073d7e3-c5e4-41c3-8289-460fbe92a687
                Copyright © 2015 St-Cyr and McGowan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 March 2015
                : 17 May 2015
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 50, Pages: 10, Words: 7933
                Categories
                Neuroscience
                Original Research

                Neurosciences
                predator odor,maternal programming,bdnf,epigenetic,crhr1,stress,hippocampus,amygdala
                Neurosciences
                predator odor, maternal programming, bdnf, epigenetic, crhr1, stress, hippocampus, amygdala

                Comments

                Comment on this article