29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MDR1 polymorphisms are associated with inflammatory bowel disease in a cohort of Croatian IBD patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Inflammatory bowel diseases (IBD) are chronic diseases of unknown etiology and pathogenesis in which genetic factors contribute to development of disease. MDR1/ ABCB1 is an interesting candidate gene for IBD. The role of two single nucleotide polymorphisms, C3435T and G2677T remains unclear due to contradictory results of current studies. Thus, the aims of this research were to investigate the association of MDR1 polymorphisms, C3435T and G2677T, and IBD.

          Methods

          A total of 310 IBD patients, 199 Crohn's disease (CD) patients and 109 ulcerative colitis (UC) patients, and 120 healthy controls were included in the study. All subjects were genotyped for G2677T/A and C3435T polymorphism using RT-PCR. In IBD patients, review of medical records was performed and patients were phenotyped according to the Montreal classification.

          Results

          Significantly higher frequency of 2677T allele (p = 0.05; OR 1.46, 95% CI (1.0-2.14)) and of the 3435TT genotype was observed among UC patients compared to controls (p = 0.02; OR 2.12; 95% CI (1.11-4.03). Heterozygous carriers for C3435T were significantly less likely to have CD (p = 0.02; OR 0.58, 95% CI (0.36-0.91)). Haplotype analysis revealed that carriers of 3435T/2677T haplotype had a significantly higher risk of having UC (p = 0.02; OR 1.55; 95% CI (1.06-2.28)).

          Conclusion

          MDR1 polymorphisms are associated with both CD and UC with a stronger association with UC.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population.

          Molecular techniques allow the survey of a large number of linked polymorphic loci in random samples from diploid populations. However, the gametic phase of haplotypes is usually unknown when diploid individuals are heterozygous at more than one locus. To overcome this difficulty, we implement an expectation-maximization (EM) algorithm leading to maximum-likelihood estimates of molecular haplotype frequencies under the assumption of Hardy-Weinberg proportions. The performance of the algorithm is evaluated for simulated data representing both DNA sequences and highly polymorphic loci with different levels of recombination. As expected, the EM algorithm is found to perform best for large samples, regardless of recombination rates among loci. To ensure finding the global maximum likelihood estimate, the EM algorithm should be started from several initial conditions. The present approach appears to be useful for the analysis of nuclear DNA sequences or highly variable loci. Although the algorithm, in principle, can accommodate an arbitrary number of loci, there are practical limitations because the computing time grows exponentially with the number of polymorphic loci. Although the algorithm, in principle, can accommodate an arbitrary number of loci, there are practical limitations because the computing time grows exponentially with the number of polymorphic loci.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants.

            Chinese hamster ovary cells selected for resistance to colchicine display pleiotropic cross-resistance to a wide range of amphiphilic drugs. The drug-resistant phenotype is due to a membrane alteration which reduces the rate of drug permeation. Surface labelling studies reveal that drug-resistant Chinese hamster ovary cell membranes possess a carbohydrate-containing component of 170 000 daltons apparent molecular weight which is not observed in wild type cells. Through studies of the metabolic incorporation of carbohydrate and protein precursors, and through the use of selective proteolysis, this component is shown to be a cell surface glycoprotein. Since this glycoprotein appears unique to mutant cells displaying altered drug permeability, we have designated it the P glycoprotein. The relative amount of surface labelled P glycoprotein correlates with the degree of drug resistance in a number of independent mutant and revertant clones. A similar high molecular weight glycoprotein is also present in drug-resistant mutants from another hamster cell line. Observations on the molecular basis of pleiotropic drug resistance are interpreted in terms of a model wherein certain surface glycoproteins control drug permeation by modulating the properties of hydrophobic membrane regions...
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues.

              Monoclonal antibody MRK16 was used to determine the location of P-glycoprotein, the product of the multidrug-resistance gene (MDR1), in normal human tissues. The protein was found to be concentrated in a small number of specific sites. Most tissues examined revealed very little P-glycoprotein. However, certain cell types in liver, pancreas, kidney, colon, and jejunum showed specific localization of P-glycoprotein. In liver, P-glycoprotein was found exclusively on the biliary canalicular front of hepatocytes and on the apical surface of epithelial cells in small biliary ductules. In pancreas, P-glycoprotein was found on the apical surface of the epithelial cells of small ductules but not larger pancreatic ducts. In kidney, P-glycoprotein was found concentrated on the apical surface of epithelial cells of the proximal tubules. Colon and jejunum both showed high levels of P-glycoprotein on the apical surfaces of superficial columnar epithelial cells. Adrenal gland showed high levels of P-glycoprotein diffusely distributed on the surface of cells in both the cortex and medulla. These results suggest that the protein has a role in the normal secretion of metabolites and certain anti-cancer drugs into bile, urine, and directly into the lumen of the gastrointestinal tract.
                Bookmark

                Author and article information

                Journal
                BMC Gastroenterol
                BMC Gastroenterol
                BMC Gastroenterology
                BioMed Central
                1471-230X
                2013
                27 March 2013
                : 13
                : 57
                Affiliations
                [1 ]Division of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb, 10000, Croatia
                [2 ]Clinical Institute for Laboratory Diagnosis, University Hospital Centre Zagreb, Zagreb, 10000, Croatia
                [3 ]Nuvisan, Zagreb, Croatia
                Article
                1471-230X-13-57
                10.1186/1471-230X-13-57
                3616873
                23537364
                1094fbb0-7761-4767-bca6-a40c02fe3881
                Copyright ©2013 Brinar et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 May 2012
                : 18 March 2013
                Categories
                Research Article

                Gastroenterology & Hepatology
                crohn's disease,ibd,mdr1,ulcerative colitis
                Gastroenterology & Hepatology
                crohn's disease, ibd, mdr1, ulcerative colitis

                Comments

                Comment on this article