11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Arm-first method as a simple and general method for synthesis of miktoarm star copolymers.

      1 ,
      Journal of the American Chemical Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Miktoarm star copolymers containing two or more arm species were synthesized by atom transfer radical polymerization using a simple and general "arm-first" method, that is, one-pot cross-linking a mixture of different linear macroinitiator (MI) species by a divinyl cross-linker, such as divinylbenzene. Using linear MIs with a high degree of bromine chain-end functionality, including polyacrylate, polystyrene, polymethacrylate and poly(ethylene oxide), resulted in high-yield star polymers (>90%). Characterized by liquid adsorption chromatography techniques, which separated star polymers on the basis of the chemical composition of arms, the obtained star product was proved to be miktoarm star copolymers containing two or more arm species in one molecule, instead of mixture of different homoarm star polymers. Within our investigation, the molar ratios of the arms in the miktoarm star copolymers were always in agreement with the composition of the initial MI mixture, indicating the powerful capacity of this arm-first method for synthesis of miktoarm star copolymers with potentially any molar ratios and species of the arms. By using a mixture containing five types of linear MIs with different chemical compositions, miktoarm star copolymers containing five kinds of arms were synthesized for the first time, which significantly expanded the methodologies for synthesis of miktoarm star copolymers by living polymerization techniques.

          Related collections

          Author and article information

          Journal
          J. Am. Chem. Soc.
          Journal of the American Chemical Society
          0002-7863
          0002-7863
          Sep 26 2007
          : 129
          : 38
          Affiliations
          [1 ] Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA.
          Article
          10.1021/ja073690g
          17784759
          10b41332-cf22-43c3-b400-119aa7d220f3
          History

          Comments

          Comment on this article