9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fabrication of Core-Shell PEI/pBMP2-PLGA Electrospun Scaffold for Gene Delivery to Periodontal Ligament Stem Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone tissue engineering is the most promising technology for enhancing bone regeneration. Scaffolds loaded with osteogenic factors improve the therapeutic effect. In this study, the bioactive PEI (polyethylenimine)/pBMP2- (bone morphogenetic protein-2 plasmid-) PLGA (poly(D, L-lactic-co-glycolic acid)) core-shell scaffolds were prepared using coaxial electrospinning for a controlled gene delivery to hPDLSCs (human periodontal ligament stem cells). The pBMP2 was encapsulated in the PEI phase as a core and PLGA was employed to control pBMP2 release as a shell. First, the scaffold characterization and mechanical properties were evaluated. Then the gene release behavior was analyzed. Our results showed that pBMP2 was released at high levels in the first few days, with a continuous release behavior in the next 28 days. At the same time, PEI/pBMP2 showed high transfection efficiency. Moreover, the core-shell electrospun scaffold showed BMP2 expression for a much longer time (more than 28 days) compared with the single axial electrospun scaffold, as evaluated by qRT-PCR and western blot after culturing with hPDLSCs. These results suggested that the core-shell PEI/pBMP2-PLGA scaffold fabricated by coaxial electrospinning had a good gene release behavior and showed a prolonged expression time with a high transfection efficiency.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy.

          Poly(ethylenimine) (PEI) is a cationic macromolecule commonly used in gene transfer/therapy protocols with high transfection efficiency both in vitro and in vivo. PEI is also cytotoxic, but the molecular basis of its cytotoxicity is poorly understood. Here, we have demonstrated that branched (25 kDa) and linear (750 kDa) PEI can both induce membrane damage and initiate apoptosis in three clinically relevant human cell lines (Jurkat T cells, umbilical vein endothelial cells, and THLE3 hepatocyte-like cells). We have defined Phase I toxicity as early necrotic-like changes (30 min) resulting from compromised membrane integrity, assessed by considerable lactate dehydrogenase release and phosphatidylserine translocation from the inner plasma membrane to the outer cell surface. Phase II cytotoxicity (24 h) was due to activation of a "mitochondrially mediated apoptotic program," resulting from PEI-induced channel formation in the outer mitochondrial membrane. This led to the release of proapoptotic cytochrome c, subsequent activation of caspase 3, and alteration in mitochondrial membrane potential as a result of caspase translocation into the mitochondria. The reported observations have important implications for the design and execution of gene therapy protocols as well for controlling intracellular distribution of drugs with cationic-based polymer-delivery systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New attachment formation in the human periodontium by guided tissue regeneration. Case reports.

            The aim of the present study was to evaluate whether a regenerative surgical procedure, based on guided tissue regeneration, could predictably result in the formation of a new attachment in human teeth. The material included 12 teeth in 10 patients with advanced periodontal disease. Following flap elevation, scaling, root planing and removal of granulation tissue, a teflon membrane was placed over the denuded root surface in such a way that the epithelium and the gingival connective tissue were prevented from reaching contact with the root during healing. The flap was replaced on the outer surface of the membrane and secured with interdental sutures. This design of wound preparation gives preference to the cells originating from the periodontal ligament (PDL-cells) to repopulate the wound area adjacent to the root. Histologic analysis of the result of treatment was made in 5 of the 12 teeth scheduled for extraction. In the remaining 7 teeth, the result was evaluated using clinical measurements. The result of healing disclosed that in all teeth treated, substantial amounts of new attachment had formed. This suggests that predictable restitution of the attachment apparatus can be accomplished by using a method of treatment which is based on the principle of guided tissue regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA delivery from polymer matrices for tissue engineering.

              We have proposed engineering tissues by the incorporation and sustained release of plasmids encoding tissue-inductive proteins from polymer matrices. Matrices of poly(lactide-co-glycolide) (PLG) were loaded with plasmid, which was subsequently released over a period ranging from days to a month in vitro. Sustained delivery of plasmid DNA from matrices led to the transfection of large numbers of cells. Furthermore, in vivo delivery of a plasmid encoding platelet-derived growth factor enhanced matrix deposition and blood vessel formation in the developing tissue. This contrasts with direct injection of the plasmid, which did not significantly affect tissue formation. This method of DNA delivery may find utility in tissue engineering and gene therapy applications.
                Bookmark

                Author and article information

                Journal
                Stem Cells Int
                Stem Cells Int
                SCI
                Stem Cells International
                Hindawi Publishing Corporation
                1687-966X
                1687-9678
                2016
                26 May 2016
                : 2016
                : 5385137
                Affiliations
                1State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
                2No. 422 Hospital of PLA, Zhanjiang, Guangdong 524005, China
                3Hospital of PLA No. 93523 Unit, Yongji, Shanxi 044500, China
                Author notes

                Academic Editor: Jiabing Fan

                Article
                10.1155/2016/5385137
                4899599
                27313626
                10e80956-ea85-410b-8e94-5ba1442359b4
                Copyright © 2016 Qiao Xie et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 December 2015
                : 18 March 2016
                : 11 April 2016
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article