18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thrombomodulin (TM) is a 557-amino acid protein with a broad cell and tissue distribution consistent with its wide-ranging physiological roles. When expressed on the lumenal surface of vascular endothelial cells in both large vessels and capillaries, its primary function is to mediate endothelial thromboresistance. The complete integral membrane-bound protein form displays five distinct functional domains, although shorter soluble (functional) variants comprising the extracellular domains have also been reported in fluids such as serum and urine. TM-mediated binding of thrombin is known to enhance the specificity of the latter serine protease toward both protein C and thrombin activatable fibrinolysis inhibitor (TAFI), increasing their proteolytic activation rate by almost three orders of magnitude with concomitant anticoagulant, antifibrinolytic, and anti-inflammatory benefits to the vascular wall. Recent years have seen an abundance of research into the cellular mechanisms governing endothelial TM production, processing, and regulation (including flow-mediated mechanoregulation)—from transcriptional and posttranscriptional (miRNA) regulation of TM gene expression, to posttranslational processing and release of the expressed protein—facilitating greater exploitation of its therapeutic potential. The goal of the present paper is to comprehensively review the endothelial/TM system from these regulatory perspectives and draw some fresh conclusions. This paper will conclude with a timely examination of the current status of TM's growing therapeutic appeal, from novel strategies to improve the clinical efficacy of recombinant TM analogs for resolution of vascular disorders such as disseminated intravascular coagulation (DIC), to an examination of the complex pleiotropic relationship between statin treatment and TM expression.

          Related collections

          Most cited references183

          • Record: found
          • Abstract: found
          • Article: not found

          The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.

          Despite its very potent vasodilating action in vivo, acetylcholine (ACh) does not always produce relaxation of isolated preparations of blood vessels in vitro. For example, in the helical strip of the rabbit descending thoracic aorta, the only reported response to ACh has been graded contractions, occurring at concentrations above 0.1 muM and mediated by muscarinic receptors. Recently, we observed that in a ring preparation from the rabbit thoracic aorta, ACh produced marked relaxation at concentrations lower than those required to produce contraction (confirming an earlier report by Jelliffe). In investigating this apparent discrepancy, we discovered that the loss of relaxation of ACh in the case of the strip was the result of unintentional rubbing of its intimal surface against foreign surfaces during its preparation. If care was taken to avoid rubbing of the intimal surface during preparation, the tissue, whether ring, transverse strip or helical strip, always exhibited relaxation to ACh, and the possibility was considered that rubbing of the intimal surface had removed endothelial cells. We demonstrate here that relaxation of isolated preparations of rabbit thoracic aorta and other blood vessels by ACh requires the presence of endothelial cells, and that ACh, acting on muscarinic receptors of these cells, stimulates release of a substance(s) that causes relaxation of the vascular smooth muscle. We propose that this may be one of the principal mechanisms for ACh-induced vasodilation in vivo. Preliminary reports on some aspects of the work have been reported elsewhere.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell.

            Shu Chien (2007)
            Vascular endothelial cells (ECs) play significant roles in regulating circulatory functions. Mechanical stimuli, including the stretch and shear stress resulting from circulatory pressure and flow, modulate EC functions by activating mechanosensors, signaling pathways, and gene and protein expressions. Mechanical forces with a clear direction (e.g., the pulsatile shear stress and the uniaxial circumferential stretch existing in the straight part of the arterial tree) cause only transient molecular signaling of pro-inflammatory and proliferative pathways, which become downregulated when such directed mechanical forces are sustained. In contrast, mechanical forces without a definitive direction (e.g., disturbed flow and relatively undirected stretch seen at branch points and other regions of complex geometry) cause sustained molecular signaling of pro-inflammatory and proliferative pathways. The EC responses to directed mechanical stimuli involve the remodeling of EC structure to minimize alterations in intracellular stress/strain and elicit adaptive changes in EC signaling in the face of sustained stimuli; these cellular events constitute a feedback control mechanism to maintain vascular homeostasis and are atheroprotective. Such a feedback mechanism does not operate effectively in regions of complex geometry, where the mechanical stimuli do not have clear directions, thus placing these areas at risk for atherogenesis. The mechanotransduction-induced EC adaptive processes in the straight part of the aorta represent a case of the "Wisdom of the Cell," as a part of the more general concept of the "Wisdom of the Body" promulgated by Cannon, to maintain cellular homeostasis in the face of external perturbations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelial cell functions.

              Endothelial cells play a wide variety of critical roles in the control of vascular function. Indeed, since the early 1980s, the accumulating knowledge of the endothelial cell structure as well as of the functional properties of the endothelial cells shifted their role from a passive membrane or barrier to a complex tissue with complex functions adaptable to needs specific in time and location. Hence, it participates to all aspects of the vascular homeostasis but also to physiological or pathological processes like thrombosis, inflammation, or vascular wall remodeling. Some of the most important endothelial functions will be described in the following review and more specifically, their role in blood vessel formation, in coagulation and fibribolysis, in the regulation of vascular tone as well as their participation in inflammatory reactions and in tumor neoangiogenesis. Copyright 2003 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Am J Physiol Heart Circ Physiol
                Am. J. Physiol. Heart Circ. Physiol
                ajpheart
                ajpheart
                ajpheart
                American Journal of Physiology - Heart and Circulatory Physiology
                American Physiological Society (Bethesda, MD )
                0363-6135
                1522-1539
                19 April 2013
                15 June 2013
                19 April 2013
                : 304
                : 12
                : H1585-H1597
                Affiliations
                [1] 1School of Biotechnology, Dublin City University, Dublin, Ireland;
                [2] 2School of Health and Human Performance, Dublin City University, Dublin, Ireland; and
                [3] 3Centre for Preventive Medicine, Dublin City University, Dublin, Ireland
                Author notes
                Address for reprint requests and other correspondence: P. Cummins, School of Biotechnology, Dublin City Univ., Glasnevin, Dublin 9, Ireland (e-mail: phil.cummins@ 123456dcu.ie ).
                Article
                H-00096-2013
                10.1152/ajpheart.00096.2013
                7212260
                23604713
                10f8fac2-d9e0-42d9-9f18-f043fe9009a2
                Copyright © 2013 the American Physiological Society
                History
                : 4 February 2013
                : 15 April 2013
                Categories
                Reviews

                Cardiovascular Medicine
                cyclic strain,endothelium,mirna,therapeutic,thrombomodulin
                Cardiovascular Medicine
                cyclic strain, endothelium, mirna, therapeutic, thrombomodulin

                Comments

                Comment on this article