4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dominance of Escherichia coli sequence types ST73, ST95, ST127 and ST131 in Australian urine isolates: a genomic analysis of antimicrobial resistance and virulence linked to F plasmids

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extraintestinal pathogenic Escherichia coli (ExPEC) are the most frequent cause of urinary tract infections (UTIs) globally. Most studies of clinical E. coli isolates are selected based on their antimicrobial resistance (AMR) phenotypes; however, this selection bias may not provide an accurate portrayal of which sequence types (STs) cause the most disease. Here, whole genome sequencing (WGS) was performed on 320 E. coli isolates from urine samples sourced from a regional hospital in Australia in 2006. Most isolates (91%) were sourced from patients with UTIs and were not selected based on any AMR phenotypes. No significant differences were observed in AMR and virulence genes profiles across age sex, and uro-clinical syndromes. While 88 STs were identified, ST73, ST95, ST127 and ST131 dominated. F virulence plasmids carrying senB-cjrABC (126/231; 55%) virulence genes were a feature of this collection. These senB-cjrABC+ plasmids were split into two categories: pUTI89-like (F29:A-:B10 and/or >95 % identity to pUTI89) ( n=73) and non-pUTI89-like ( n=53). Compared to all other plasmid replicons, isolates with pUTI89-like plasmids carried fewer antibiotic resistance genes (ARGs), whilst isolates with senB-cjrABC+/non-pUTI89 plasmids had a significantly higher load of ARGs and class 1 integrons. F plasmids were not detected in 89 genomes, predominantly ST73. Our phylogenomic analyses identified closely related isolates from the same patient associated with different pathologies and evidence of strain-sharing events involving isolates sourced from companion and wild animals.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          fastp: an ultra-fast all-in-one FASTQ preprocessor

          Abstract Motivation Quality control and preprocessing of FASTQ files are essential to providing clean data for downstream analysis. Traditionally, a different tool is used for each operation, such as quality control, adapter trimming and quality filtering. These tools are often insufficiently fast as most are developed using high-level programming languages (e.g. Python and Java) and provide limited multi-threading support. Reading and loading data multiple times also renders preprocessing slow and I/O inefficient. Results We developed fastp as an ultra-fast FASTQ preprocessor with useful quality control and data-filtering features. It can perform quality control, adapter trimming, quality filtering, per-read quality pruning and many other operations with a single scan of the FASTQ data. This tool is developed in C++ and has multi-threading support. Based on our evaluation, fastp is 2–5 times faster than other FASTQ preprocessing tools such as Trimmomatic or Cutadapt despite performing far more operations than similar tools. Availability and implementation The open-source code and corresponding instructions are available at https://github.com/OpenGene/fastp.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prokka: rapid prokaryotic genome annotation.

            T Seemann (2014)
            The multiplex capability and high yield of current day DNA-sequencing instruments has made bacterial whole genome sequencing a routine affair. The subsequent de novo assembly of reads into contigs has been well addressed. The final step of annotating all relevant genomic features on those contigs can be achieved slowly using existing web- and email-based systems, but these are not applicable for sensitive data or integrating into computational pipelines. Here we introduce Prokka, a command line software tool to fully annotate a draft bacterial genome in about 10 min on a typical desktop computer. It produces standards-compliant output files for further analysis or viewing in genome browsers. Prokka is implemented in Perl and is freely available under an open source GPLv2 license from http://vicbioinformatics.com/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              BLAST+: architecture and applications

              Background Sequence similarity searching is a very important bioinformatics task. While Basic Local Alignment Search Tool (BLAST) outperforms exact methods through its use of heuristics, the speed of the current BLAST software is suboptimal for very long queries or database sequences. There are also some shortcomings in the user-interface of the current command-line applications. Results We describe features and improvements of rewritten BLAST software and introduce new command-line applications. Long query sequences are broken into chunks for processing, in some cases leading to dramatically shorter run times. For long database sequences, it is possible to retrieve only the relevant parts of the sequence, reducing CPU time and memory usage for searches of short queries against databases of contigs or chromosomes. The program can now retrieve masking information for database sequences from the BLAST databases. A new modular software library can now access subject sequence data from arbitrary data sources. We introduce several new features, including strategy files that allow a user to save and reuse their favorite set of options. The strategy files can be uploaded to and downloaded from the NCBI BLAST web site. Conclusion The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences. We have also improved the user interface of the command-line applications.
                Bookmark

                Author and article information

                Journal
                Microb Genom
                Microb Genom
                mgen
                mgen
                Microbial Genomics
                Microbiology Society
                2057-5858
                2023
                20 July 2023
                20 July 2023
                : 9
                : 7
                : mgen001068
                Affiliations
                [ 1] Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo , NSW, Australia
                [ 2] departmentAustralian Centre for Genomic Epidemiological Microbiology , University of Technology Sydney , NSW, Australia
                [ 3] Central West Pathology Laboratory, Charles Sturt University , Orange, NSW, Australia
                [ 4] School of Animal and Veterinary Science, The University of Adelaide , Adelaide, South Australia, Australia
                Author notes
                *Correspondence: Veronica Maria Jarocki, veronica.jarocki@ 123456uts.edu.au
                *Correspondence: Steven Philip Djordjevic, steven.djordjevic@ 123456uts.edu.au
                Author information
                https://orcid.org/0000-0002-7535-8184
                https://orcid.org/0000-0002-8716-0028
                https://orcid.org/0000-0003-4035-4789
                https://orcid.org/0000-0002-8297-5770
                https://orcid.org/0000-0003-1249-0994
                https://orcid.org/0000-0001-9301-5372
                Article
                001068
                10.1099/mgen.0.001068
                10438821
                37471138
                1178940a-900b-4358-b4b4-60a53eae194a
                © 2023 The Authors

                This is an open-access article distributed under the terms of the Creative Commons Attribution License.

                History
                : 12 December 2022
                : 20 June 2023
                Categories
                Research Articles
                Pathogens and Epidemiology
                Custom metadata
                0

                utis,expec,f plasmids,puti89,senb,antimicrobial resistance
                utis, expec, f plasmids, puti89, senb, antimicrobial resistance

                Comments

                Comment on this article