17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Functional characterization of a novel 3D model of the epithelial-mesenchymal trophic unit

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          The immunogenetics of asthma and eczema: a new focus on the epithelium.

          Asthma and eczema (atopic dermatitis) are the most common chronic diseases of childhood. These diseases are characterized by the production of high levels of immunoglobulin E in response to common allergens. Their development depends on both genetic and environmental factors. Over the past few years, several genes and genetic loci that are associated with increased susceptibility to asthma and atopic dermatitis have been described. Many of these genes are expressed in the mucosa and epidermis, indicating that events at epithelial-cell surfaces might be driving disease processes. This review describes the mechanisms of innate epithelial immunity and the role of microbial factors in providing protection from disease development. Understanding events at the epithelial-cell surface might provide new insights for the development of new treatments for inflammatory epithelial disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial-mesenchymal interactions in the pathogenesis of asthma.

            During lung development, repair, and inflammation, local production of cytokines (eg, transforming growth factor-beta) and growth factors (eg, epidermal growth factor) by epithelial and mesenchymal cells mediate bidirectional growth control effectively creating an epithelial-mesenchymal trophic unit. In asthma the bronchial epithelium is highly abnormal, with structural changes involving separation of columnar cells from their basal attachments and functional changes including increased expression and release of proinflammatory cytokines, growth factors, and mediator-generating enzymes. Beneath this damaged structure there is an increase in the number of subepithelial myofibroblasts that deposit interstitial collagens causing thickening and increased density of the subepithelial basement membrane. Our recent studies suggest that the extent of epithelial damage in asthma may be the result of impaired epidermal growth factor receptor-mediated repair. In view of the close spatial relationship between the damaged epithelium and the underlying myofibroblasts, we propose that impaired epithelial repair cooperates with the T(H)2 environment to shift the set point for communication within the trophic unit. This leads to myofibroblast activation, excessive matrix deposition, and production of mediators that propagate and amplify the remodeling responses throughout the airway wall.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of the epithelium in airway remodeling in asthma.

              The bronchial epithelium is the barrier to the external environment and plays a vital role in protection of the internal milieu of the lung. It functions within the epithelial-mesenchymal trophic unit to control the local microenvironment and help maintain tissue homeostasis. However, in asthma, chronic perturbation of these homeostatic mechanisms leads to alterations in the structure of the airways, termed remodeling. Damage to the epithelium is now recognized to play a key role in driving airway remodeling. We have postulated that epithelial susceptibility to environmental stress and injury together with impaired repair responses results in generation of signals that act on the underlying mesenchyme to propagate and amplify inflammatory and remodeling responses in the submucosa. Many types of challenges to the epithelium, including pathogens, allergens, environmental pollutants, cigarette smoke, and even mechanical forces, can elicit production of mediators by the epithelium, which can be translated into remodeling responses by the mesenchyme. Several important mediators of remodeling have been identified, most notably transforming growth factor-beta, which is released from damaged/repairing epithelium or in response to inflammatory mediators, such as IL-13. The cross talk between the epithelium and the underlying mesenchyme to drive remodeling responses is considered in the context of subepithelial fibrosis and potential pathogenetic mechanisms linked to the asthma susceptibility gene, a disintegrin and metalloprotease (ADAM)33.
                Bookmark

                Author and article information

                Journal
                Experimental Lung Research
                Experimental Lung Research
                Informa UK Limited
                0190-2148
                1521-0499
                March 20 2017
                February 07 2017
                April 03 2017
                February 07 2017
                : 43
                : 2
                : 82-92
                Article
                10.1080/01902148.2017.1303098
                119dcce7-4c11-406f-80ee-81fc78195cf1
                © 2017
                History

                Comments

                Comment on this article