92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The amphioxus genome and the evolution of the chordate karyotype.

          Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Zebrafish hox clusters and vertebrate genome evolution.

            HOX genes specify cell fate in the anterior-posterior axis of animal embryos. Invertebrate chordates have one HOX cluster, but mammals have four, suggesting that cluster duplication facilitated the evolution of vertebrate body plans. This report shows that zebrafish have seven hox clusters. Phylogenetic analysis and genetic mapping suggest a chromosome doubling event, probably by whole genome duplication, after the divergence of ray-finned and lobe-finned fishes but before the teleost radiation. Thus, teleosts, the most species-rich group of vertebrates, appear to have more copies of these developmental regulatory genes than do mammals, despite less complexity in the anterior-posterior axis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptome Sequencing to Detect Gene Fusions in Cancer

              Recurrent gene fusions, typically associated with hematological malignancies and rare bone and soft tissue tumors1, have been recently described in common solid tumors2–9. Here we employ an integrative analysis of high-throughput long and short read transcriptome sequencing of cancer cells to discover novel gene fusions. As a proof of concept we successfully utilized integrative transcriptome sequencing to “re-discover” the BCR-ABL1 10 gene fusion in a chronic myelogenous leukemia cell line and the TMPRSS2-ERG 2,3 gene fusion in a prostate cancer cell line and tissues. Additionally, we nominated, and experimentally validated, novel gene fusions resulting in chimeric transcripts in cancer cell lines and tumors. Taken together, this study establishes a robust pipeline for the discovery of novel gene chimeras using high throughput sequencing, opening up an important class of cancer-related mutations for comprehensive characterization.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                26 November 2014
                : 9
                : 11
                : e113686
                Affiliations
                [1 ]Department of Biology, University of Bergen, Bergen, Norway
                [2 ]Institute of Marine Research, Bergen, Norway
                [3 ]Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, CSIC, Barcelona, Spain
                [4 ]www.fauna.is, Reykjavik, Iceland
                [5 ]Department of Biology, Georgia Southern University, Statesboro, Georgia, United States of America
                [6 ]Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
                University of Lausanne, Switzerland
                Author notes

                Competing Interests: Jón Baldur Hlidberg is associated with www.fauna.is. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

                Conceived and designed the experiments: RNF JC CPC. Performed the experiments: RNF FC CPC. Analyzed the data: RNF FC JC. Contributed reagents/materials/analysis tools: RNF JBH CPC JC. Wrote the paper: RNF CPC JC. Contributed original artwork: JBH.

                Article
                PONE-D-14-36833
                10.1371/journal.pone.0113686
                4245216
                25426855
                11a8db15-bb26-4985-b26a-6c3f5f29425f
                Copyright @ 2014

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 15 August 2014
                : 27 October 2014
                Page count
                Pages: 38
                Funding
                This work was supported by the Research Council of Norway (RCN) project #178837/40 and 224816/E40 to (RNF), the Spanish Ministry of Science and Innovation (MICINN) AGL2010-15597 to (JC) and by the National Science Foundation, USA (NSF) IOS 0844818, 1041885 and 1241312 to (CPC). FC was supported by a postdoctoral (Juan de la Cierva Programme) fellowship from MICINN and the RCN (224816/E40). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Evolutionary Biology
                Evolutionary Physiology
                Molecular Evolution
                Organismal Evolution
                Physiology
                Renal Physiology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article