16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Host strain specific sex pheromone variation in Spodoptera frugiperda

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The fall armyworm Spodoptera frugiperda (Lepidoptera; Noctuidae) consists of two distinct strains with different host plant preferences for corn and rice. To assess whether pheromonal-mediated behavioral isolation accompanies the habitat isolation on different host plants, we compared the sex pheromone composition among females of the two strains. Pheromone glands were extracted with or without injection of pheromone biosynthesis activating neuropeptide (PBAN). To assess the mode of inheritance of this variation, we also analyzed the pheromone composition of F 1 hybrid females.

          Results

          Relative to intra-strain variation, the pheromone composition of the two strains differed significantly. Corn strain females contained significantly more of the second most abundant pheromone compound Z11-16:Ac (m), and significantly less of most other compounds, than rice strain females. When females were injected with PBAN before their glands were extracted, the differences between the strains were less pronounced but still statistically significant. The pheromone composition of hybrid females showed a maternal inheritance of the major component Z9-14:Ac (M) as well as of Z11-16:Ac (m). Most other compounds showed an inheritance indicating genetic dominance of the corn strain. The within-strain phenotypic correlations among the various components were consistent with their hypothesized biosynthetic pathway, and between-strain differences in the correlation structure suggested candidate genes that may explain the pheromone differences between the two strains. These include Δ9- and Δ11 desaturases, and possibly also a Δ7-desaturase, although the latter has not been identified in insects so far.

          Conclusion

          The two host strains of S. frugiperda produce systematically differing female sex pheromone blends. Previously-documented geographic variation in the sexual communication of this species did not take strain identity into account, and thus may be partly explained by different strain occurrence in different regions. The finding of pheromone differences reinforces the possibility of incipient reproductive isolation among these strains, previously shown to differ in the timing of nocturnal mating activity and host plant use. Finding the genetic basis of the pheromone differences, as well as these other biological traits, will help to elucidate the role of premating isolation in the continuing differentiation of these two strains that may eventually lead to speciation.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          On the scent of speciation: the chemosensory system and its role in premating isolation.

          Chemosensory speciation is characterized by the evolution of barriers to genetic exchange that involve chemosensory systems and chemical signals. Here, we review some representative studies documenting chemosensory speciation in an attempt to evaluate the importance and the different aspects of the process in nature and to gain insights into the genetic basis and the evolutionary mechanisms of chemosensory trait divergence. Although most studies of chemosensory speciation concern sexual isolation mediated by pheromone divergence, especially in Drosophila and moth species, other chemically based behaviours (habitat choice, pollinator attraction) can also play an important role in speciation and are likely to do so in a wide range of invertebrate and vertebrate species. Adaptive divergence of chemosensory traits in response to factors such as pollinators, hosts and conspecifics commonly drives the evolution of chemical prezygotic barriers. Although the genetic basis of chemosensory speciation remains largely unknown, genomic approaches to chemosensory gene families and to enzymes involved in biosynthetic pathways of signal compounds now provide new opportunities to dissect the genetic basis of these complex traits and of their divergence among taxa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insect pheromones--an overview of biosynthesis and endocrine regulation.

            This overview describes, compares, and attempts to unify major themes related to the biosynthetic pathways and endocrine regulation of insect pheromone production. Rather than developing and dedicating an entirely unique set of enzymes for pheromone biosynthesis, insects appear to have evolved to add one or a few tissue-specific auxiliary or modified enzymes that transform the products of "normal" metabolism to pheromone compounds of high stereochemical and quantitative specificity. This general understanding is derived from research on model species from one exopterygote insect order (Blattodea) and three endopterygote insect orders (Coleoptera, Diptera, and Lepidoptera). For instance, the ketone hydrocarbon contact sex pheromone of the female German cockroach, Blattella germanica, derives its origins from fatty acid biosynthesis, arising from elongation of a methyl-branched fatty acyl-CoA moiety followed by decarboxylation, hydroxylation, and oxidation. Coleopteran sex and aggregation pheromones also arise from modifications of fatty acid biosynthesis or other biosynthetic pathways, such as the isoprenoid pathway (e.g. Cucujidae, Curculionidae, and Scolytidae), or from simple transformations of amino acids or other highly elaborated host precursors (e.g. Scarabaeidae and Scolytidae). Like the sex pheromone of B. germanica, female-produced dipteran (e.g. Drosophilidae and Muscidae) sex pheromone components originate from elongation of fatty acyl-CoA moieties followed by loss of the carbonyl carbon and the formation of the corresponding hydrocarbon. Female-produced lepidopteran sex pheromones are also derived from fatty acids, but many moths utilize a species-specific combination of desaturation and chain-shortening reactions followed by reductive modification of the carbonyl carbon. Carbon skeletons derived from amino acids can also be used as chain initiating units and elongated to lepidopteran pheromones by this pathway (e.g. Arctiidae and Noctuidae). Insects utilize at least three hormonal messengers to regulate pheromone biosynthesis. Blattodean and coleopteran pheromone production is induced by juvenile hormone III (JH III). In the female common house fly, Musca domestica, and possibly other species of Diptera, it appears that during hydrocarbon sex pheromone biosynthesis, ovarian-produced ecdysteroids regulate synthesis by affecting the activities of one or more fatty acyl-CoA elongation enzyme(s) (elongases). Lepidopteran sex pheromone biosynthesis is often mediated by a 33 or 34 amino acid pheromone biosynthesis activating neuropeptide (PBAN) through alteration of enzyme activities at one or more steps prior to or during fatty acid synthesis or during modification of the carbonyl group. Although a molecular level understanding of the regulation of insect pheromone biosynthesis is in its infancy, in the male California fivespined ips, Ips paraconfusus (Coleoptera: Scolytidae), JH III acts at the transcriptional level by increasing the abundance of mRNA for 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in de novo isoprenoid aggregation pheromone biosynthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host plant influences on sex pheromone behavior of phytophagous insects.

              The sexual behavior of phytophagous insects is often integrated in a variety of ways with their host plants. This integration may be manifested as effects or influences of host plants on insect physiology and behavior, including sex pheromone communication, that reflect strategies by insects to optimize mating and reproduction. Certain insects sequester or otherwise acquire host plant compounds and use them as sex pheromones or sex pheromone precursors. Other insects produce or release sex pheromones in response to particular host plant cues. Chemicals from host plants often synergize or otherwise enhance insect responses to sex pheromones. By these means, host plants may be used by insects to regulate or mediate sexual communication. For many species of insects, host plant influences on insect sex pheromone communication may be important aspects of the formation of feeding and mating aggregations, of insect strategies to locate both hosts and mates, of behavioral reproductive isolation among sibling species, and of the regulation of reproduction to coincide with the availability of food and oviposition sites. Knowledge of these relationships is critical to understanding many different areas of the behavioral ecology of plant-feeding insects.
                Bookmark

                Author and article information

                Journal
                Front Zool
                Frontiers in Zoology
                BioMed Central
                1742-9994
                2008
                25 December 2008
                : 5
                : 20
                Affiliations
                [1 ]Max Planck Institute for Chemical Ecology, Dept. Entomology, Hans-Knöll Strasse 8, 07745 Jena, Germany
                [2 ]Max Planck Institute for Chemical Ecology, Research group Mass spectrometry, Hans-Knöll Strasse 8, 07745 Jena, Germany
                Article
                1742-9994-5-20
                10.1186/1742-9994-5-20
                2628650
                19109878
                11d67d31-1098-42c2-8a31-4d62ead80db4
                Copyright © 2008 Groot et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 September 2008
                : 25 December 2008
                Categories
                Research

                Animal science & Zoology
                Animal science & Zoology

                Comments

                Comment on this article