Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of a Click-Chemistry Reagent Compatible with Mass Cytometry

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent development of mass cytometry has allowed simultaneous detection of 40 or more unique parameters from individual single cells. While similar to flow cytometry, which is based on detection of fluorophores, one key distinguishing feature of mass cytometry is the detection of atomic masses of lanthanides by mass spectrometry in a mass cytometer. Its superior mass resolution results in lack of signal overlap, thereby allowing multiparametric detection of molecular features in each single cell greater than that of flow cytometry, which is limited to 20 parameters. Unfortunately, most detection in mass cytometry relies on lanthanide-tagged antibodies, which is ideal to detect proteins, but not other types of molecular features. To further expand the repertoire of molecular features that are detectable by mass cytometry, we developed a lanthanide-chelated, azide-containing probe that allows click-chemistry mediated labeling of target molecules. Following incorporation of the thymidine analog 5-ethynyl-2′-deoxyuridine (EdU) during DNA synthesis in S-phase of the cell cycle, we demonstrate that the probe introduced here, tagged with Terbium-159 ( 159Tb), reacts via copper-catalyzed azide-alkyne Huisgen cycloaddition (click-chemistry) with Edu. Thus, detection of 159Tb makes it possible to measure DNA synthesis in single cells using mass cytometry. The approach introduced here shows similar sensitivity (true positive rate) to other methods used to measure DNA synthesis in single cells by mass cytometry and is compatible with the parallel antibody-based detection of other parameters in single cells. Due to its universal nature, the use of click-chemistry in mass cytometry expands the types of molecular targets that can be monitored by mass cytometry.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A chemical method for fast and sensitive detection of DNA synthesis in vivo.

          We have developed a method to detect DNA synthesis in proliferating cells, based on the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) and its subsequent detection by a fluorescent azide through a Cu(I)-catalyzed [3 + 2] cycloaddition reaction ("click" chemistry). Detection of the EdU label is highly sensitive and can be accomplished in minutes. The small size of the fluorescent azides used for detection results in a high degree of specimen penetration, allowing the staining of whole-mount preparations of large tissue and organ explants. In contrast to BrdU, the method does not require sample fixation or DNA denaturation and permits good structural preservation. We demonstrate the use of the method in cultured cells and in the intestine and brain of whole animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

            A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions ( 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracting a Cellular Hierarchy from High-dimensional Cytometry Data with SPADE

              Multiparametric single-cell analysis is critical for understanding cellular heterogeneity. Despite recent technological advances in single-cell measurements, methods for analyzing high-dimensional single-cell data are often subjective, labor intensive and require prior knowledge of the biological system under investigation. To objectively uncover cellular heterogeneity from single-cell measurements, we present a novel computational approach, Spanning-tree Progression Analysis of Density-normalized Events (SPADE). We applied SPADE to cytometry data of mouse and human bone marrow. In both cases, SPADE organized cells in a hierarchy of related phenotypes that partially recapitulated well-described patterns of hematopoiesis. In addition, SPADE produced a map of intracellular signal activation across the landscape of human hematopoietic development. SPADE revealed a functionally distinct cell population, natural killer (NK) cells, without using any NK-specific parameters. SPADE is a versatile method that facilitates the analysis of cellular heterogeneity, the identification of cell types, and comparison of functional markers in response to perturbations.
                Bookmark

                Author and article information

                Contributors
                jvanberl@umn.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 April 2018
                27 April 2018
                2018
                : 8
                : 6657
                Affiliations
                [1 ]ISNI 0000000419368657, GRID grid.17635.36, Department of Medicine, Cardiovascular Division, , University of Minnesota, ; Minneapolis, MN United States
                [2 ]ISNI 0000000419368657, GRID grid.17635.36, Department of Chemistry, , University of Minnesota, ; Minneapolis, MN United States
                [3 ]ISNI 0000000419368657, GRID grid.17635.36, Lillehei Heart Institute, , University of Minnesota, ; Minneapolis, MN United States
                [4 ]ISNI 0000000419368657, GRID grid.17635.36, Stem Cell Institute, , University of Minnesota, ; Minneapolis, MN United States
                Author information
                http://orcid.org/0000-0001-9229-4429
                Article
                25000
                10.1038/s41598-018-25000-y
                5923286
                29703991
                11e892c4-d3c1-4769-9d72-6d26c13961a9
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 August 2017
                : 10 April 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article