3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plea for standardised reporting of frugal innovations

      , , ,
      BMJ Innovations
      BMJ

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Beyond Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and Sustainability of Health and Care Technologies

          Background Many promising technological innovations in health and social care are characterized by nonadoption or abandonment by individuals or by failed attempts to scale up locally, spread distantly, or sustain the innovation long term at the organization or system level. Objective Our objective was to produce an evidence-based, theory-informed, and pragmatic framework to help predict and evaluate the success of a technology-supported health or social care program. Methods The study had 2 parallel components: (1) secondary research (hermeneutic systematic review) to identify key domains, and (2) empirical case studies of technology implementation to explore, test, and refine these domains. We studied 6 technology-supported programs—video outpatient consultations, global positioning system tracking for cognitive impairment, pendant alarm services, remote biomarker monitoring for heart failure, care organizing software, and integrated case management via data sharing—using longitudinal ethnography and action research for up to 3 years across more than 20 organizations. Data were collected at micro level (individual technology users), meso level (organizational processes and systems), and macro level (national policy and wider context). Analysis and synthesis was aided by sociotechnically informed theories of individual, organizational, and system change. The draft framework was shared with colleagues who were introducing or evaluating other technology-supported health or care programs and refined in response to feedback. Results The literature review identified 28 previous technology implementation frameworks, of which 14 had taken a dynamic systems approach (including 2 integrative reviews of previous work). Our empirical dataset consisted of over 400 hours of ethnographic observation, 165 semistructured interviews, and 200 documents. The final nonadoption, abandonment, scale-up, spread, and sustainability (NASSS) framework included questions in 7 domains: the condition or illness, the technology, the value proposition, the adopter system (comprising professional staff, patient, and lay caregivers), the organization(s), the wider (institutional and societal) context, and the interaction and mutual adaptation between all these domains over time. Our empirical case studies raised a variety of challenges across all 7 domains, each classified as simple (straightforward, predictable, few components), complicated (multiple interacting components or issues), or complex (dynamic, unpredictable, not easily disaggregated into constituent components). Programs characterized by complicatedness proved difficult but not impossible to implement. Those characterized by complexity in multiple NASSS domains rarely, if ever, became mainstreamed. The framework showed promise when applied (both prospectively and retrospectively) to other programs. Conclusions Subject to further empirical testing, NASSS could be applied across a range of technological innovations in health and social care. It has several potential uses: (1) to inform the design of a new technology; (2) to identify technological solutions that (perhaps despite policy or industry enthusiasm) have a limited chance of achieving large-scale, sustained adoption; (3) to plan the implementation, scale-up, or rollout of a technology program; and (4) to explain and learn from program failures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            No surgical innovation without evaluation: the IDEAL recommendations.

            Surgery and other invasive therapies are complex interventions, the assessment of which is challenged by factors that depend on operator, team, and setting, such as learning curves, quality variations, and perception of equipoise. We propose recommendations for the assessment of surgery based on a five-stage description of the surgical development process. We also encourage the widespread use of prospective databases and registries. Reports of new techniques should be registered as a professional duty, anonymously if necessary when outcomes are adverse. Case series studies should be replaced by prospective development studies for early technical modifications and by prospective research databases for later pre-trial evaluation. Protocols for these studies should be registered publicly. Statistical process control techniques can be useful in both early and late assessment. Randomised trials should be used whenever possible to investigate efficacy, but adequate pre-trial data are essential to allow power calculations, clarify the definition and indications of the intervention, and develop quality measures. Difficulties in doing randomised clinical trials should be addressed by measures to evaluate learning curves and alleviate equipoise problems. Alternative prospective designs, such as interrupted time series studies, should be used when randomised trials are not feasible. Established procedures should be monitored with prospective databases to analyse outcome variations and to identify late and rare events. Achievement of improved design, conduct, and reporting of surgical research will need concerted action by editors, funders of health care and research, regulatory bodies, and professional societies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Delphi Technique in Health Sciences: A Map

              Objectives: In health sciences, the Delphi technique is primarily used by researchers when the available knowledge is incomplete or subject to uncertainty and other methods that provide higher levels of evidence cannot be used. The aim is to collect expert-based judgments and often to use them to identify consensus. In this map, we provide an overview of the fields of application for Delphi techniques in health sciences in this map and discuss the processes used and the quality of the findings. We use systematic reviews of Delphi techniques for the map, summarize their findings and examine them from a methodological perspective. Methods: Twelve systematic reviews of Delphi techniques from different sectors of the health sciences were identified and systematically analyzed. Results: The 12 systematic reviews show, that Delphi studies are typically carried out in two to three rounds with a deliberately selected panel of experts. A large number of modifications to the Delphi technique have now been developed. Significant weaknesses exist in the quality of the reporting. Conclusion: Based on the results, there is a need for clarification with regard to the methodological approaches of Delphi techniques, also with respect to any modification. Criteria for evaluating the quality of their execution and reporting also appear to be necessary. However, it should be noted that we cannot make any statements about the quality of execution of the Delphi studies but rather our results are exclusively based on the reported findings of the systematic reviews.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                BMJ Innovations
                BMJ Innov
                BMJ
                2055-8074
                2055-642X
                October 06 2021
                October 2021
                October 2021
                September 13 2021
                : 7
                : 4
                : 642-646
                Article
                10.1136/bmjinnov-2021-000710
                1219ad83-6124-4d71-a7d4-ae50f2af3bc7
                © 2021
                History

                Comments

                Comment on this article