15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drug Discovery against Acanthamoeba Infections: Present Knowledge and Unmet Needs

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although major strides have been made in developing and testing various anti-acanthamoebic drugs, recurrent infections, inadequate treatment outcomes, health complications, and side effects associated with the use of currently available drugs necessitate the development of more effective and safe therapeutic regimens. For any new anti-acanthamoebic drugs to be more effective, they must have either superior potency and safety or at least comparable potency and an improved safety profile compared to the existing drugs. The development of the so-called ‘next-generation’ anti-acanthamoebic agents to address this challenge is an active area of research. Here, we review the current status of anti-acanthamoebic drugs and discuss recent progress in identifying novel pharmacological targets and new approaches, such as drug repurposing, development of small interfering RNA (siRNA)-based therapies and testing natural products and their derivatives. Some of the discussed approaches have the potential to change the therapeutic landscape of Acanthamoeba infections.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment

          Free-living amoebae of the genus Acanthamoeba are causal agents of a severe sight-threatening infection of the cornea known as Acanthamoeba keratitis. Moreover, the number of reported cases worldwide is increasing year after year, mostly in contact lens wearers, although cases have also been reported in non-contact lens wearers. Interestingly, Acanthamoeba keratitis has remained significant, despite our advances in antimicrobial chemotherapy and supportive care. In part, this is due to an incomplete understanding of the pathogenesis and pathophysiology of the disease, diagnostic delays and problems associated with chemotherapeutic interventions. In view of the devastating nature of this disease, here we present our current understanding of Acanthamoeba keratitis and molecular mechanisms associated with the disease, as well as virulence traits of Acanthamoeba that may be potential targets for improved diagnosis, therapeutic interventions and/or for the development of preventative measures. Novel molecular approaches such as proteomics, RNAi and a consensus in the diagnostic approaches for a suspected case of Acanthamoeba keratitis are proposed and reviewed based on data which have been compiled after years of working on this amoebic organism using many different techniques and listening to many experts in this field at conferences, workshops and international meetings. Altogether, this review may serve as the milestone for developing an effective solution for the prevention, control and treatment of Acanthamoeba infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of cross-links in corneal tissue.

            The aim of this study was to investigate the possibility of induction of cross-links in corneal tissue in order to increase the stiffness as a basis for a future conservative treatment of keratectasia. Collagenous biomaterials can be stabilized by chemical and physical agents. The epithelium of enucleated porcine eyes was removed. Eight test groups, 10 eyes each, were treated with UV-light (lambda=254 nm), 0.5% riboflavin, 0.5% riboflavin and UV-light (365 nm) blue light (436 nm) and sunlight, and the chemical agents-glutaraldehyde (1% and 0.1%, 10 min) and Karnovsky's solution (0.1%, 10 min). Strips of 5 mm in width and 9 mm in length were cut from each cornea and the stress-strain behaviour of the strips was measured to assess the cross-linking process. For comparison, ten untreated corneas were measured by the same method. Compared to untreated corneas treatment with riboflavin and UV-irradiation as well as weak glutaraldehyde or Karnovsky's solutions resulted in an increased stiffness of the cornea. The biomechanical behaviour of the cornea can be altered by glutaraldehyde, Karnovsky's solution, and with riboflavin and UV-irradiation which offers the potential of a conservative treatment of keratoconus. To optimize this effect further investigation is necessary regarding the dose-response and in-vivo application. Copyright 1998 Academic Press Limited.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Corneal neovascularization.

              Corneal neovascularization (NV) is a sight-threatening condition usually associated with inflammatory or infectious disorders of the ocular surface. It has been shown in the field of cancer angiogenesis research that a balance exists between angiogenic factors (such as fibroblast growth factor and vascular endothelial growth factor) and anti-angiogenic molecules (such as angiostatin, endostatin, or pigment epithelium derived factor) in the cornea. Several inflammatory, infectious, degenerative, and traumatic disorders are associated with corneal NV, in which the balance is tilted towards angiogenesis. The pathogenesis of corneal NV may be influenced by matrix metalloproteinases and other proteolytic enzymes. New medical and surgical treatments, including angiostatic steroids, nonsteroidal inflammatory agents, argon laser photocoagulation, and photodynamic therapy have been effective in animal models to inhibit corneal NV and transiently restore corneal "angiogenic privilege."
                Bookmark

                Author and article information

                Journal
                Pathogens
                Pathogens
                pathogens
                Pathogens
                MDPI
                2076-0817
                22 May 2020
                May 2020
                : 9
                : 5
                : 405
                Affiliations
                [1 ]School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; hany.elsheikha@ 123456nottingham.ac.uk
                [2 ]Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, UAE; rsiddiqui@ 123456aus.edu
                Author notes
                [* ]Correspondence: naveed5438@ 123456gmail.com ; Tel.: +971-6515-4752
                Author information
                https://orcid.org/0000-0003-3303-930X
                https://orcid.org/0000-0001-9646-6208
                https://orcid.org/0000-0001-7667-8553
                Article
                pathogens-09-00405
                10.3390/pathogens9050405
                7281112
                32456110
                123119e0-c42d-4681-87c0-501e6b2004a3
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 April 2020
                : 12 May 2020
                Categories
                Review

                acanthamoeba,combination therapy,alternative treatment,drug discovery,natural products,drug repurposing

                Comments

                Comment on this article