Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity

      ,
      Environmental Science: Nano
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here we review mitochondrial effects of silver nanoparticle (AgNP) exposure, which may mediate overall cytotoxicity observed following AgNP exposure.

          Abstract

          Silver nanoparticles (AgNPs) are extensively used for their antibacterial properties in a diverse set of applications, ranging from the treatment of municipal wastewater to infection control in hospitals. However, the properties of AgNPs that render them conducive to bactericidal use in commerce may influence their potential toxicity to non-bacterial organisms. Based on the physiological and phylogenetic similarities between bacteria and mitochondria within eukaryotic cells, mitochondria are a likely intracellular target of AgNP toxicity. Mitochondria-specific outcomes of AgNP exposures have been identified in multiple cell types, including (but not limited to) loss of membrane potential, inhibition of enzymes involved in oxidative phosphorylation, and changes in calcium sequestration. However, the biological significance of mitochondrial toxicity due to AgNP exposure is currently incompletely understood. This review examines the existing evidence of mitochondrial toxicity induced by AgNP exposure, with discussions of the role of the physicochemical properties of the nanoparticles themselves in mitochondrial toxicity. The impacts of potentially differential cell- and tissue-specific significance of AgNP-induced mitochondrial dysfunction are also discussed.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.

          In this work we investigated the antibacterial properties of differently shaped silver nanoparticles against the gram-negative bacterium Escherichia coli, both in liquid systems and on agar plates. Energy-filtering transmission electron microscopy images revealed considerable changes in the cell membranes upon treatment, resulting in cell death. Truncated triangular silver nanoplates with a {111} lattice plane as the basal plane displayed the strongest biocidal action, compared with spherical and rod-shaped nanoparticles and with Ag(+) (in the form of AgNO(3)). It is proposed that nanoscale size and the presence of a {111} plane combine to promote this biocidal property. To our knowledge, this is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and our results demonstrate that silver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Negligible particle-specific antibacterial activity of silver nanoparticles.

            For nearly a decade, researchers have debated the mechanisms by which AgNPs exert toxicity to bacteria and other organisms. The most elusive question has been whether the AgNPs exert direct "particle-specific" effects beyond the known antimicrobial activity of released silver ions (Ag(+)). Here, we infer that Ag(+) is the definitive molecular toxicant. We rule out direct particle-specific biological effects by showing the lack of toxicity of AgNPs when synthesized and tested under strictly anaerobic conditions that preclude Ag(0) oxidation and Ag(+) release. Furthermore, we demonstrate that the toxicity of various AgNPs (PEG- or PVP- coated, of three different sizes each) accurately follows the dose-response pattern of E. coli exposed to Ag(+) (added as AgNO(3)). Surprisingly, E. coli survival was stimulated by relatively low (sublethal) concentration of all tested AgNPs and AgNO(3) (at 3-8 μg/L Ag(+), or 12-31% of the minimum lethal concentration (MLC)), suggesting a hormetic response that would be counterproductive to antimicrobial applications. Overall, this work suggests that AgNP morphological properties known to affect antimicrobial activity are indirect effectors that primarily influence Ag(+) release. Accordingly, antibacterial activity could be controlled (and environmental impacts could be mitigated) by modulating Ag(+) release, possibly through manipulation of oxygen availability, particle size, shape, and/or type of coating.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli.

              The antibacterial effect and mechanism of action of a silver ion solution that was electrically generated were investigated for Staphylococcus aureus and Escherichia coli by analyzing the growth, morphology, and ultrastructure of the bacterial cells following treatment with the silver ion solution. Bacteria were exposed to the silver ion solution for various lengths of time, and the antibacterial effect of the solution was tested using the conventional plate count method and flow cytometric (FC) analysis. Reductions of more than 5 log(10) CFU/ml of both S. aureus and E. coli bacteria were confirmed after 90 min of treatment with the silver ion solution. Significant reduction of S. aureus and E. coli cells was also observed by FC analysis; however, the reduction rate determined by FC analysis was less than that determined by the conventional plate count method. These differences may be attributed to the presence of bacteria in an active but nonculturable (ABNC) state after treatment with the silver ion solution. Transmission electron microscopy showed considerable changes in the bacterial cell membranes upon silver ion treatment, which might be the cause or consequence of cell death. In conclusion, the results of the present study suggest that silver ions may cause S. aureus and E. coli bacteria to reach an ABNC state and eventually die.
                Bookmark

                Author and article information

                Journal
                ESNNA4
                Environmental Science: Nano
                Environ. Sci.: Nano
                Royal Society of Chemistry (RSC)
                2051-8153
                2051-8161
                2016
                2016
                : 3
                : 2
                : 311-322
                Article
                10.1039/C5EN00187K
                12502f7d-77f9-42b4-8c52-ccba26a98d25
                © 2016
                History

                Comments

                Comment on this article