11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Wheat Spike Detection Method in UAV Images Based on Improved YOLOv5

      , , , , , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deep-learning-based object detection algorithms have significantly improved the performance of wheat spike detection. However, UAV images crowned with small-sized, highly dense, and overlapping spikes cause the accuracy to decrease for detection. This paper proposes an improved YOLOv5 (You Look Only Once)-based method to detect wheat spikes accurately in UAV images and solve spike error detection and miss detection caused by occlusion conditions. The proposed method introduces data cleaning and data augmentation to improve the generalization ability of the detection network. The network is rebuilt by adding a microscale detection layer, setting prior anchor boxes, and adapting the confidence loss function of the detection layer based on the IoU (Intersection over Union). These refinements improve the feature extraction for small-sized wheat spikes and lead to better detection accuracy. With the confidence weights, the detection boxes in multiresolution images are fused to increase the accuracy under occlusion conditions. The result shows that the proposed method is better than the existing object detection algorithms, such as Faster RCNN, Single Shot MultiBox Detector (SSD), RetinaNet, and standard YOLOv5. The average accuracy (AP) of wheat spike detection in UAV images is 94.1%, which is 10.8% higher than the standard YOLOv5. Thus, the proposed method is a practical way to handle the spike detection in complex field scenarios and provide technical references for field-level wheat phenotype monitoring.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Deep Residual Learning for Image Recognition

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              ImageNet classification with deep convolutional neural networks

                Bookmark

                Author and article information

                Contributors
                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                August 2021
                August 05 2021
                : 13
                : 16
                : 3095
                Article
                10.3390/rs13163095
                12c3d52e-3dff-4da9-87ad-c8cfafe0b119
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article