Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Asteraceae as a model system for evolutionary studies: from fossils to genomes

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With c. 24 700 species (10% of all flowering plants), Asteraceae are one of the largest and most phenotypically diverse angiosperm families, with considerable economic and ecological importance. Asteraceae are distributed worldwide, from nearly polar latitudes all the way to the tropics, and occur across a diverse range of habitats from extreme deserts to swamps and from lowland rainforests to alpine tundra. Altogether, these characteristics make this family an outstanding model system to address a broad range of eco-evolutionary questions. In this review, we summarize recent progress in our understanding of Asteraceae on the basis of joint efforts by specialists in the fields of palaeobotany, cytogenetics, comparative genomics and phylogenomics. We will highlight how these developments are opening up new possibilities for integrating fields and better comprehending evolution beyond Asteraceae.

          Related collections

          Most cited references181

          • Record: found
          • Abstract: found
          • Article: not found

          The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution

          The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce

            Lettuce (Lactuca sativa) is a major crop and a member of the large, highly successful Compositae family of flowering plants. Here we present a reference assembly for the species and family. This was generated using whole-genome shotgun Illumina reads plus in vitro proximity ligation data to create large superscaffolds; it was validated genetically and superscaffolds were oriented in genetic bins ordered along nine chromosomal pseudomolecules. We identify several genomic features that may have contributed to the success of the family, including genes encoding Cycloidea-like transcription factors, kinases, enzymes involved in rubber biosynthesis and disease resistance proteins that are expanded in the genome. We characterize 21 novel microRNAs, one of which may trigger phasiRNAs from numerous kinase transcripts. We provide evidence for a whole-genome triplication event specific but basal to the Compositae. We detect 26% of the genome in triplicated regions containing 30% of all genes that are enriched for regulatory sequences and depleted for genes involved in defence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Polyploidy: an evolutionary and ecological force in stressful times

              Polyploidy has been hypothesized to be both an evolutionary dead-end and a source for evolutionary innovation and species diversification. Although polyploid organisms, especially plants, abound, the apparent nonrandom long-term establishment of genome duplications suggests a link with environmental conditions. Whole-genome duplications seem to correlate with periods of extinction or global change, while polyploids often thrive in harsh or disturbed environments. Evidence is also accumulating that biotic interactions, for instance, with pathogens or mutualists, affect polyploids differently than nonpolyploids. Here, we review recent findings and insights on the effect of both abiotic and biotic stress on polyploids versus nonpolyploids and propose that stress response in general is an important and even determining factor in the establishment and success of polyploidy.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Botanical Journal of the Linnean Society
                Oxford University Press (OUP)
                0024-4074
                1095-8339
                October 01 2022
                September 17 2022
                August 20 2022
                October 01 2022
                September 17 2022
                August 20 2022
                : 200
                : 2
                : 143-164
                Article
                10.1093/botlinnean/boac032
                1300749e-3d63-43d5-a62f-3d49e17a653d
                © 2022

                https://academic.oup.com/pages/standard-publication-reuse-rights

                History

                Comments

                Comment on this article