12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The origin of midlatitude ice clouds and the resulting influence on their microphysical properties

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The radiative role of ice clouds in the atmosphere is known to be important, but uncertainties remain concerning the magnitude and net effects. However, through measurements of the microphysical properties of cirrus clouds, we can better characterize them, which can ultimately allow for their radiative properties to be more accurately ascertained. Recently, two types of cirrus clouds differing by formation mechanism and microphysical properties have been classified – in situ and liquid origin cirrus. In this study, we present observational evidence to show that two distinct types of cirrus do exist. Airborne, in situ measurements of cloud ice water content (IWC), ice crystal concentration (<i>N</i><sub>ice</sub>), and ice crystal size from the 2014 ML-CIRRUS campaign provide cloud samples that have been divided according to their origin type. The key features that set liquid origin cirrus apart from the in situ origin cirrus are higher frequencies of high IWC ( &gt; 100 ppmv), higher <i>N</i><sub>ice</sub> values, and larger ice crystals. A vertical distribution of <i>N</i><sub>ice</sub> shows that the in situ origin cirrus clouds exhibit a median value of around 0.1 cm<sup>−3</sup>, while the liquid origin concentrations are slightly, but notably higher. The median sizes of the crystals contributing the most mass are less than 200 µm for in situ origin cirrus, with some of the largest crystals reaching 550 µm in size. The liquid origin cirrus, on the other hand, were observed to have median diameters greater than 200 µm, and crystals that were up to 750 µm. An examination of these characteristics in relation to each other and their relationship to temperature provides strong evidence that these differences arise from the dynamics and conditions in which the ice crystals formed. Additionally, the existence of these two groups in cirrus cloud populations may explain why a bimodal distribution in the IWC-temperature relationship has been observed. We hypothesize that the low IWC mode is the result of in situ origin cirrus and the high IWC mode is the result of liquid origin cirrus.

          Related collections

          Author and article information

          Journal
          Atmospheric Chemistry and Physics
          Atmos. Chem. Phys.
          Copernicus GmbH
          1680-7324
          2016
          May 12 2016
          : 16
          : 9
          : 5793-5809
          Article
          10.5194/acp-16-5793-2016
          130f31b7-3bc3-4a8e-b3c1-5899de6f8727
          © 2016

          http://creativecommons.org/licenses/by/3.0/

          History

          Comments

          Comment on this article