8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Localization of metallocarboxypeptidase D in AtT-20 cells. Potential role in prohormone processing.

      The Journal of Biological Chemistry
      Animals, Carboxypeptidases, analysis, metabolism, Cells, Cultured, Membrane Glycoproteins, Mice, Pituitary Gland, Anterior, cytology, Protein Processing, Post-Translational, Proteins

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carboxypeptidase D (CPD) is a recently discovered metallocarboxypeptidase that is predominantly located in the trans-Golgi network (TGN), and also cycles between the cell surface and the TGN. In the present study, the intracellular distribution of CPD was examined in AtT-20 cells, a mouse anterior pituitary-derived corticotroph. CPD-containing compartments were isolated using antibodies to the CPD cytosolic tail. The immunopurified vesicles contained TGN proteins (TGN38, furin, syntaxin 6) but not lysosomal or plasma membrane proteins. The CPD-containing vesicles also contained neuropeptide-processing enzymes and adrenocorticotropic hormone, a product of proopiomelanocortin proteolysis. Electron microscopic analysis revealed that CPD is present within the TGN and immature secretory granules but is virtually absent from mature granules, suggesting that CPD is actively removed from the regulated pathway during the process of granule maturation. A second major finding of the present study is that a soluble truncated form of CPD is secreted mainly via the constitutive pathway in AtT-20 cells, indicating that the lumenal domain does not contain signals for the sorting of CPD to mature secretory granules. Taken together, these data are consistent with the proposal that CPD participates in the processing of proteins within the TGN and immature secretory vesicles.

          Related collections

          Author and article information

          Comments

          Comment on this article