Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Homeobox A3 and KDM6A cooperate in transcriptional control of aerobic glycolysis and glioblastoma progression

      , , , , , , , , ,
      Neuro-Oncology
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Alterations in transcriptional regulators of glycolytic metabolism have been implicated in brain tumor growth, but the underlying molecular mechanisms remain poorly understood.

          Methods

          Knockdown and overexpression cells were used to explore the functional roles of HOXA3 in cell proliferation, tumor formation, and aerobic glycolysis. Chromatin immunoprecipitation, luciferase assays, and western blotting were performed to verify the regulation of HK2 and PKM2 by HOXA3. PLA, Immunoprecipitation, and GST-pull-down assays were used to examine the interaction of HOXA3 and KDM6A.

          Results

          We report that transcription factor homeobox A3 (HOXA3), which is aberrantly highly expressed in glioblastoma (GBM) patients and predicts poor prognosis, transcriptionally activates aerobic glycolysis, leading to a significant acceleration in cell proliferation and tumor growth. Mechanically, we identified KDM6A, a lysine-specific demethylase, as an important cooperator of HOXA3 in regulating aerobic glycolysis. HOXA3 activates KDM6A transcription and recruits KDM6A to genomic binding sites of glycolytic genes, targeting glycolytic genes for transcriptional activation by removing the suppressive histone modification H3K27 trimethylation. Further evidence demonstrates that HOXA3 requires KDM6A for transcriptional activation of aerobic glycolysis and brain tumor growth.

          Conclusions

          Our findings provide a novel molecular mechanism linking HOXA3-mediated transactivation and KDM6A-coupled H3K27 demethylation in regulating glucose metabolism and GBM progression.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The 2021 WHO Classification of Tumors of the Central Nervous System: a summary

          The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, is the sixth version of the international standard for the classification of brain and spinal cord tumors. Building on the 2016 updated fourth edition and the work of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy, the 2021 fifth edition introduces major changes that advance the role of molecular diagnostics in CNS tumor classification. At the same time, it remains wedded to other established approaches to tumor diagnosis such as histology and immunohistochemistry. In doing so, the fifth edition establishes some different approaches to both CNS tumor nomenclature and grading and it emphasizes the importance of integrated diagnoses and layered reports. New tumor types and subtypes are introduced, some based on novel diagnostic technologies such as DNA methylome profiling. The present review summarizes the major general changes in the 2021 fifth edition classification and the specific changes in each taxonomic category. It is hoped that this summary provides an overview to facilitate more in-depth exploration of the entire fifth edition of the WHO Classification of Tumors of the Central Nervous System.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018

            The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention (CDC) and National Cancer Institute (NCI), is the largest population-based cancer registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors available and supersedes all previous reports in terms of completeness and accuracy and is the first CBTRUS Report to provide the distribution of molecular markers for selected brain and CNS tumor histologies. All rates are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 24.25 (Malignant AAAIR=7.06, Non-malignant AAAIR=17.18). This overall rate was higher in females compared to males (26.95 versus 21.35) and non-Hispanics compared to Hispanics (24.68 versus 22.12). The most commonly occurring malignant brain and other CNS tumor was glioblastoma (14.3% of all tumors and 49.1% of malignant tumors), and the most common non-malignant tumor was meningioma (39.0% of all tumors and 54.5% of non-malignant tumors). Glioblastoma was more common in males, and meningioma was more common in females. In children and adolescents (age 0–19 years), the incidence rate of all primary brain and other CNS tumors was 6.21. An estimated 88,190 new cases of malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US population in 2021 (25,690 malignant and 62,500 non-malignant). There were 83,029 deaths attributed to malignant brain and other CNS tumors between 2014 and 2018. This represents an average annual mortality rate of 4.43 per 100,000 and an average of 16,606 deaths per year. The five-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 35.6%, for a non-malignant brain and other CNS tumors the five-year relative survival rate was 91.8%.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic landscape of esophageal squamous cell carcinoma.

              Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers. We performed exome sequencing on 113 tumor-normal pairs, yielding a mean of 82 non-silent mutations per tumor, and 8 cell lines. The mutational profile of ESCC closely resembles those of squamous cell carcinomas of other tissues but differs from that of esophageal adenocarcinoma. Genes involved in cell cycle and apoptosis regulation were mutated in 99% of cases by somatic alterations of TP53 (93%), CCND1 (33%), CDKN2A (20%), NFE2L2 (10%) and RB1 (9%). Histone modifier genes were frequently mutated, including KMT2D (also called MLL2; 19%), KMT2C (MLL3; 6%), KDM6A (7%), EP300 (10%) and CREBBP (6%). EP300 mutations were associated with poor survival. The Hippo and Notch pathways were dysregulated by mutations in FAT1, FAT2, FAT3 or FAT4 (27%) or AJUBA (JUB; 7%) and NOTCH1, NOTCH2 or NOTCH3 (22%) or FBXW7 (5%), respectively. These results define the mutational landscape of ESCC and highlight mutations in epigenetic modulators with prognostic and potentially therapeutic implications.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neuro-Oncology
                Oxford University Press (OUP)
                1522-8517
                1523-5866
                April 01 2023
                April 06 2023
                October 10 2022
                April 01 2023
                April 06 2023
                October 10 2022
                : 25
                : 4
                : 635-647
                Article
                10.1093/neuonc/noac231
                36215227
                1385f876-8be0-4e37-9d96-d7c80a263d84
                © 2022

                https://academic.oup.com/pages/standard-publication-reuse-rights

                History

                Comments

                Comment on this article