23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Akkermansia muciniphila is a promising probiotic

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Akkermansia muciniphila ( A. muciniphila), an intestinal symbiont colonizing in the mucosal layer, is considered to be a promising candidate as probiotics. A. muciniphila is known to have an important value in improving the host metabolic functions and immune responses. Moreover, A. muciniphila may have a value in modifying cancer treatment. However, most of the current researches focus on the correlation between A. muciniphila and diseases, and little is known about the causal relationship between them. Few intervention studies on A. muciniphila are limited to animal experiments, and limited studies have explored its safety and efficacy in humans. Therefore, a critical analysis of the current knowledge in A. muciniphila will play an important foundation for it to be defined as a new beneficial microbe. This article will review the bacteriological characteristics and safety of A. muciniphila, as well as its causal relationship with metabolic disorders, immune diseases and cancer therapy.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.

          Short chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are produced at high concentration by bacteria in the gut and subsequently released in the bloodstream. Basal acetate concentrations in the blood (about 100 microm) can further increase to millimolar concentrations following alcohol intake. It was known previously that SCFAs can activate leukocytes, particularly neutrophils. In the present work, we have identified two previously orphan G protein-coupled receptors, GPR41 and GPR43, as receptors for SCFAs. Propionate was the most potent agonist for both GPR41 and GPR43. Acetate was more selective for GPR43, whereas butyrate and isobutyrate were more active on GPR41. The two receptors were coupled to inositol 1,4,5-trisphosphate formation, intracellular Ca2+ release, ERK1/2 activation, and inhibition of cAMP accumulation. They exhibited, however, a differential coupling to G proteins; GPR41 coupled exclusively though the Pertussis toxin-sensitive Gi/o family, whereas GPR43 displayed a dual coupling through Gi/o and Pertussis toxin-insensitive Gq protein families. The broad expression profile of GPR41 in a number of tissues does not allow us to infer clear hypotheses regarding its biological functions. In contrast, the highly selective expression of GPR43 in leukocytes, particularly polymorphonuclear cells, suggests a role in the recruitment of these cell populations toward sites of bacterial infection. The pharmacology of GPR43 matches indeed the effects of SCFAs on neutrophils, in terms of intracellular Ca2+ release and chemotaxis. Such a neutrophil-specific SCFA receptor is potentially involved in the development of a variety of diseases characterized by either excessive or inefficient neutrophil recruitment and activation, such as inflammatory bowel diseases or alcoholism-associated immune depression. GPR43 might therefore constitute a target allowing us to modulate immune responses in these pathological situations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice

            Recent evidence indicates that the gut microbiota plays a key role in the pathophysiology of obesity. Indeed, diet-induced obesity (DIO) has been associated to substantial changes in gut microbiota composition in rodent models. In the context of obesity, enhanced adiposity is accompanied by low-grade inflammation of this tissue but the exact link with gut microbial community remains unknown. In this report, we studied the consequences of high-fat diet (HFD) administration on metabolic parameters and gut microbiota composition over different periods of time. We found that Akkermansia muciniphila abundance was strongly and negatively affected by age and HFD feeding and to a lower extend Bilophila wadsworthia was the only taxa following an opposite trend. Different approaches, including multifactorial analysis, showed that these changes in Akkermansia muciniphila were robustly correlated with the expression of lipid metabolism and inflammation markers in adipose tissue, as well as several circulating parameters (i.e., glucose, insulin, triglycerides, leptin) from DIO mice. Thus, our data shows the existence of a link between gut Akkermansia muciniphila abundance and adipose tissue homeostasis on the onset of obesity, thus reinforcing the beneficial role of this bacterium on metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota.

              Bacterial culture was the first method used to describe the human microbiota, but this method is considered outdated by many researchers. Metagenomics studies have since been applied to clinical microbiology; however, a "dark matter" of prokaryotes, which corresponds to a hole in our knowledge and includes minority bacterial populations, is not elucidated by these studies. By replicating the natural environment, environmental microbiologists were the first to reduce the "great plate count anomaly," which corresponds to the difference between microscopic and culture counts. The revolution in bacterial identification also allowed rapid progress. 16S rRNA bacterial identification allowed the accurate identification of new species. Mass spectrometry allowed the high-throughput identification of rare species and the detection of new species. By using these methods and by increasing the number of culture conditions, culturomics allowed the extension of the known human gut repertoire to levels equivalent to those of pyrosequencing. Finally, taxonogenomics strategies became an emerging method for describing new species, associating the genome sequence of the bacteria systematically. We provide a comprehensive review on these topics, demonstrating that both empirical and hypothesis-driven approaches will enable a rapid increase in the identification of the human prokaryote repertoire.
                Bookmark

                Author and article information

                Contributors
                fzhang@njmu.edu.cn
                Journal
                Microb Biotechnol
                Microb Biotechnol
                10.1111/(ISSN)1751-7915
                MBT2
                Microbial Biotechnology
                John Wiley and Sons Inc. (Hoboken )
                1751-7915
                21 April 2019
                November 2019
                : 12
                : 6 , Thematic Issue on Fungal Biotechnology ( doiID: 10.1111/mbt2.v12.6 )
                : 1109-1125
                Affiliations
                [ 1 ] Medical Center for Digestive Diseases the Second Affiliated Hospital of Nanjing Medical University Nanjing 210011 China
                [ 2 ] Key Lab of Holistic Integrative Enterology Nanjing Medical University Nanjing 210011 China
                [ 3 ] Biogas Institute of Ministry of Agriculture and Rural Affairs Chengdu 610041 China
                [ 4 ] Center for Anaerobic Microbial Resources of Sichuan Province Chengdu 610041 China
                Author notes
                [*] [* ]For correspondence. E‐mail fzhang@ 123456njmu.edu.cn ; Tel. +86 25 58509883; Fax +86 25 58509931.
                Author information
                https://orcid.org/0000-0003-4157-1144
                Article
                MBT213410
                10.1111/1751-7915.13410
                6801136
                31006995
                13954ebc-b76a-4010-b5be-b1fab512152d
                © 2019 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 February 2019
                : 02 April 2019
                : 04 April 2019
                Page count
                Figures: 1, Tables: 3, Pages: 17, Words: 10765
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81873548
                Categories
                Minireview
                Minireviews
                Custom metadata
                2.0
                mbt213410
                November 2019
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.7.0 mode:remove_FC converted:20.10.2019

                Biotechnology
                Biotechnology

                Comments

                Comment on this article